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Fig. 4: Probabilistic graphical model of the conditional forward diffusion process. We wish to sample the random variable
x0 corresponding to the training data distribution q(x0). The directed edges between xt−1 and xt (for t = 1, . . . , T ) correspond to
the vanilla forward diffusion process. Each directed edge denotes the sampling distribution q(xt |xt−1) which successively adds a
small amounts of Gaussian noise: q(xt |xt) = N

(
xt ;

√
1− βt xt−1, βtI

)
[32, 38]. However, we are interested in sampling from

q(x0 |xinput
0 ) = q(x0), rsim(x0,x

input
0 ). This objective corresponds to adding an additional undirected factor rsim(x0,x

input
0 ) between

x0 and xinput
0 ; xinput

0 is treated as constant. Our task is to perform inference over this graphical model and sample from q(x0 |xinput
0 )

using a diffusion model that was trained to perform reverse diffusion in the absence of the rsim factor.

APPENDIX I
PROOF: GENERALIZED CONDITIONAL GUIDANCE

GRADIENT

Classifier guidance is not only restricted to classifiers, it
also requires training a classifier p(y |xt) for each intermedi-
ate latent state [34, 39]. First, we extend classifier guidance
to the more general setting where the conditioner is any
non-negative function:

Theorem 1: When a diffusion model ϵθt is trained to sample
from q(x0), the conditional distribution q(x0 |xinput

0 ) ∝
q(x0) rsim(x0,x

input
0 ) can be sampled by using the following

guidance gradient during reverse diffusion:

gt(xt) = ∇xt
log

∫
x0

q(x0 |xt) rsim(x0,x
input
0 ) dx0

= ∇xt
logEq(x0 |xt)

[
rsim(x0,x

input
0 )

]
(4)

A. Proof using the variational inference perspective

q(xt |xt+1,x
input
0 ) ∝ q(xt,xt+1 |xinput

0 )

=

∫
x0

q(xt,xt+1,x0 |xinput
0 ) dx0

=

∫
x0

q(x0 |xinput
0 ) q(xt,xt+1 |x0,x

input
0 ) dx0

=

∫
x0

q(x0 |xinput
0 ) q(xt,xt+1 |x0)︸ ︷︷ ︸ dx0

(since x1:T is independent of xinput
0 conditioned on x0)

∝
∫
x0

q(x0) rsim(x0,x
input
0 )︸ ︷︷ ︸ q(xt,xt+1 |x0) dx0

(by the definition of q(x0 |xinput
0 ) ∝ q(x0) rsim(x0,x

input
0 ))

=

∫
x0

rsim(x0,x
input
0 ) q(xt,xt+1,x0) dx0

=

∫
x0

rsim(x0,x
input
0 ) q(xt+1) q(xt |xt+1) q(x0 |xt,xt+1) dx0

=

∫
x0

rsim(x0,x
input
0 ) q(xt+1) q(xt |xt+1) q(x0 |xt)︸ ︷︷ ︸ dx0

(since x0 and xt+1 are independent conditioned on xt)

∝ q(xt |xt+1)

∫
x0

q(x0 |xt) rsim(x0,x
input
0 ) dx0

= q(xt |xt+1)Eq(x0 |xt)

[
rsim(x0,x

input
0 )

]
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Therefore, following the same analysis as the first-
order Gaussian approximation, the guidance gradient
is ∇xt logEq(x0 |xt)

[
rsim(x0,x

input
0 )

]
evaluated at

xt = µt+1(xt+1).

B. Proof using the score functions perspective

The score function of intermediate states xt of
the vanilla forward diffusion process is defined as
s(xt) = ∇xt

log q(xt). However, we’re interested in the
score function of the conditional forward diffusion process
s(xt |xinput

0 ) = ∇xt log q(xt |xinput
0 ). The additional term

that needs to be added to s(xt) to obtain s(xt |xinput
0 ) is the

guidance gradient. Therefore, we now derive s(xt |xinput
0 )

in terms of s(xt):

s(xt |xinput
0 )︸ ︷︷ ︸

conditional score function

= ∇xt log q(xt |xinput
0 )

= ∇xt
log

∫
x0

q(xt,x0 |xinput
0 ) dx0

= ∇xt
log

∫
x0

q(x0 |xinput
0 ) q(xt |x0,x

input
0 ) dx0

= ∇xt log

∫
x0

q(x0 |xinput
0 ) q(xt |x0)︸ ︷︷ ︸dx0

(since x1:T is independent of xinput
0 conditioned on x0)

= ∇xt log

∫
x0

q(x0) rsim(x0,x
input
0 )︸ ︷︷ ︸ q(xt |x0) dx0

(by the definition of q(x0 |xinput
0 ) ∝ q(x0) rsim(x0,x

input
0 ))

= ∇xt
log

∫
x0

rsim(x0,x
input
0 ) q(xt,x0) dx0

= ∇xt log

∫
x0

rsim(x0,x
input
0 ) q(xt) q(x0 |xt) dx0

= ∇xt
log q(xt) +∇xt

log

∫
x0

q(x0 |xt) rsim(x0,x
input
0 ) dx0

= ∇xt log q(xt) +∇xt logEq(x0 |xt)

[
rsim(x0,x

input
0 )

]
= s(xt) +∇xt

logEq(x0 |xt)

[
rsim(x0,x

input
0 )

]
︸ ︷︷ ︸

guidance gradient

APPENDIX II
PROOF: APPROXIMATING EXPECTED DENOISED IMAGE x0

GIVEN xt USING THE DIFFUSION MODEL

APPENDIX III
TRAINING ON THE RUGD DATASET

A. Information about the RUGD dataset

The RUGD dataset (Fig. 5, [15]) is an off-road dataset of
video sequences captured from a small, unmanned mobile
robot traversing in unstructured environments. It contains over
7,453 labeled images from 17 scenes, annotated with pixel-
level segmentation over 24 semantic classes. The annotated
frames are spaced five frames apart.

We split the 24 semantic categories as 16 in-distribution
labels: CID = {dirt, sand, grass, tree, pole, sky,
asphalt, gravel, mulch, rock-bed, log, fence,
bush, sign, rock, concrete}, and 8 OOD labels

corresponding to “obstacle” classes: COOD = {vehicle,
container/generic-object, building, bicycle,
person, bridge, picnic-table, water}

B. Training a diffusion model on the RUGD Dataset
Our diffusion model is trained on samples from the RUGD

train split that does not contain humans and artificial con-
structs (Fig. 6 (left)). The out-of-distribution and anomalous
images are ‘held out’ for evaluation (Fig. 6 (right)). As can
be seen from Fig. 7, our trained diffusion model successfully
generates realistic images containing only in-distribution
classes such as trees, grass, and the occasional footpath.

C. Performance on RUGD Dataset
We evaluate our method on the RUGD [15] dataset and

share qualitative results in Fig. 8. The diffusion model is
trained on RUGD data without artificial constructs. At test-
time, we present our method with OOD images containing
anomalies from held-out classes. Fig. 9 shows the impact of
each component of our analysis pipeline.

D. Tuning the Guidance Strength
The strength of the guidance term in our diffusion model

can be tuned to enforce a variable level of consistency
between the image being generated x′ and the target image
x. Fig. 10 (left) shows the impact of the guidance term on
the image generated, for a sample anomalous image x from
the RUGD dataset.

E. Limitations
Our method’s performance appears to degrade on samples

with a large number of anomalies (Fig. 10 (right)), compared
to input images with a fewer number of anomalies. This can
be largely attributed to under-segmentation by SAM, which
uses an (input-independent) hyperparameter that dictates the
number of segments to output. Future work could aim to
develop a criterion by which SAM can vary its segmentation
resolution, without requiring human intervention.

APPENDIX IV
TOY EXPERIMENTS ON THE CLEVR DATASET

A. Validating our improved diffusion guidance
We show that the SoftRect energy function improves our

ability to remove anomalies via guided diffusion from the
CLEVR dataset [79] in Section IV-B . In Section III-D, we
also show what happens as we tune the guidance strength
hyperparameter.

B. Validating the SoftRect Guidance Function
To validate our choice of SoftRect over L2 guidance, we

train two diffusion models — one for each guidance method
— on examples from the CLEVR data [79] containing no
reds, yellows, or browns (Fig. 11 (left)). We then present
the trained model with anomalous images containing those
held out colours, and compare their ability to remove anoma-
lies without modifying non-anomalous parts of the image
(Fig. 11 (right)). We find that SoftRect indeed outperforms
L2 guidance when it comes to diffusion model-based anomaly
removal.



Fig. 5: Examples of video frames, annotations and semantic classes from the full RUGD dataset [15].

Fig. 6: In-distribution and out-of-distribution images from the RUGD dataset. Left: Examples of the in-distribution images on which
our RUGD diffusion model was trained. In general, these images contain natural, off-road vegetation — a mixture of forest, meadow,
mulch, and paths, without any humans or artificial constructions like buildings or vehicles. Right: Examples of held-out, out-of-distribution
RUGD images the robot might encounter. These contains anomaly objects like buildings and vehicles. The diffusion model trained on the
images on the left must remove anomalies from the images on the right.

Fig. 7: Samples generated from the trained diffusion model (without
conditioning). The training data is shown in ?? (left). The generated
samples are photorealistic, and appear very similar to the training
images.

Fig. 8: Qualitative results on small, anomalous examples from the
RUGD dataset. Our full DiffUnc pipeline does particularly well
at detecting small and camouflaged/human-imperceptible anomalies.



Fig. 9: Impact of SAM and FeatUp on DiffUnc performance. Removing FeatUp lowers the contrast between in- and out-of- distribution
segments. Removing SAM particularly degrades performance on small anomalies.

Fig. 10: Left: When there are many anomalies in a single image (in this case all vehicles and buildings are anomalies), the performance of
our model appears to degrade. This is likely because SAM is under-segmenting an image with a high number of objects. The number of
masks SAM generates is a hyperparameter in our pipeline and so could be adjusted, but the question of how to handle images with a varying
number of objects is a non-trivial one. Right: The strength of our diffusion model’s guidance term can be tuned by a hyperparameter α.
As α decreases, the guidance enforcing consistency between the target image and the diffusion process’ output weakens, and an increasing
number of changes are allowed.

Fig. 11: Left: Examples of CLEVR images without reds, yellows, or browns, upon which our tabletop diffusion models were trained.
Right: Comparing the performance of SoftRect- and L2- guided diffusion models shows that SoftRect successfully guides the diffusion
process toward fewer unecessary changes on in-distribution objects. As a result, SoftRect-guided diffusion yields an uncertainty map with
few false-positive pixels.
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