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Fig. 1: We present a method for anomaly detection in off-road images using an analysis by synthesis approach. Synthesis: A diffusion
model trained on in-distribution data edits the input image to remove out-of-distribution segments. Analysis: Anomaly detection is framed
as extracting the difference between input and edited images. The training dataset contains off-road images with: (a-d) natural vegetation,
ground and sky, but no buildings, humans or vehicles, (e-f) underwater scenes with mostly the oceanbed and coral. The diffusion model
makes interesting edits, such as (a) blending buildings into sky, (b) removing people, (c) growing moss over buildings, (e) removing fish,
robots and divers, and (f) morphing camouflaged fish into rocks. Our method can detect small objects and multiple anomalies per image (d).

Abstract— In order to navigate safely and reliably in off-road

and unstructured environments, robots must detect anomalies

that are out-of-distribution (OOD) with respect to the training

data. We present an analysis-by-synthesis approach for pixel-wise

anomaly detection without making any assumptions about the

nature of OOD data. Given an input image, we use a generative

diffusion model to synthesize an edited image that removes

anomalies while keeping the remaining image unchanged. Then,

we formulate anomaly detection as analyzing which image

segments were modified by the diffusion model. We propose a

novel inference approach for guided diffusion by analyzing the

ideal guidance gradient and deriving a principled approximation

that bootstraps the diffusion model to predict guidance gradients.

Our editing technique is purely test-time that can be integrated

into existing workflows without the need for retraining or

fine-tuning. Finally, we use a combination of vision-language
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foundation models to compare pixels in a learned feature space

and detect semantically meaningful edits, enabling accurate

anomaly detection for off-road navigation.

I. INTRODUCTION

The need for reliable autonomous robotic navigation
is increasing in unstructured, off-road environments like
planetary exploration [5, 6], forests [7], deserts [8, 9] and un-
derwater [10, 11]. However, the perception systems required
for off-road navigation (e.g., semantic segmentation [12–14])
are often trained on relatively small datasets [15, 16] and
deployed in environments where images often contain “out-
of-distribution” (OOD) anomalies not well represented in
the training data. Furthermore, lighting conditions, weather,
and terrain can vary significantly between training and test
environments. To navigate safely and reliably in unfamiliar
environments, robots must identify such anomalies in order
to anticipate potential perception failures. The aim of this
work is to detect anomalous segments (if any) in a given
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Fig. 2: Our proposed pipeline for pixel-wise anomaly detection. Left to right: In the synthesis step, a trained diffusion model edits a given
input image to remove anomaly segments without modifying other parts of the image. In this case, the model blends the OOD vehicle
into dirt in the background. The analysis step extracts anomalies by comparing the pair of images in the CLIP [1] feature space. First,
MaskCLIP [2] computes low-resolution CLIP features for each image, which are upsampled using FeatUp [3]. In this figure, features are
visualized via a t-SNE projection to three dimensions. Cosine distances between pixel features in the two images produce a raw anomaly
map that highlights anomaly objects. In contrast, comparing the images directly in RGB space (extreme right) is noisy and unable to isolate
OOD segments. Finally, SAM [4] processes the input image to generate segments; these are used to refine and clean the anomaly map.

RGB image that are out-of-distribution from the training data.
Prior work on anomaly detection has focused on discrim-

inative models that directly map pixels to anomaly scores.
These models classify features at the pixel- or segment-
level as in-distribution or as anomalies [17–31]. On the
other hand, recent advances in generative AI have led to the
development of diffusion models [32, 33] that can model
complex distributions and generate high-quality realistic
images [34, 35]. In this work, we present an analysis-by-
synthesis [36, 37] approach to anomaly detection (hence the
title “anomalies-by-synthesis”). We use a generative diffusion
model to “edit” the input image and remove anomalies while
keeping the remaining input unchanged. The new, synthesized
image represents what the scene would have looked like had
it not contained any anomalies. Then, we frame the problem
of anomaly detection as analyzing which parts of the image
were edited by the generative model to remove anomalies. In
other words, the difference between the input and synthesized
images produces anomaly detections.

Our method has several advantages. First, we do not

make any assumptions about the nature of anomalies the
model can expect at test time. Our approach does not require

any OOD data during training. We use diffusion guidance
[34, 38–40] to edit the input image. This is a post-
hoc test-time procedure that does not require re-training or

finetuning the diffusion model. The diffusion model is only
assumed to be trained on the standard objective of fitting to
the training data. Therefore, our method can be applied to pre-
trained or off-the-shelf diffusion models whose architectures
and hyperparameters are carefully tuned for high-quality
image synthesis.

We propose a novel diffusion guidance approach to ensure
that the synthesized image is both similar to the input image
and has a high probability under the training distribution.
We theoretically analyze the ideal guidance gradient, which
is intractable to compute. We then propose a principled and

tractable approximation that, unlike prior methods, reuses
the learned diffusion score function to compute the guidance

gradient. Our diffusion guidance approach modifies pixels
corresponding to anomaly regions while keeping the in-
distribution parts of the image as close to the input as possible.

Unfortunately, extracting anomaly segments from the
edited image is not as straightforward as computing
pixel-wise intensity differences with the input image. The
diffusion model tends to slightly alter pixels throughout
the entire image, including regions that are in-distribution.
While the differences are subtle to the human eye, pixel-wise
intensity differences are sensitive to even minor changes
between images. This sensitivity produces extremely noisy
anomaly masks riddled with false positives. We mitigate
this issue using a combination of foundation vision models:
MaskCLIP [2], FeatUp [3] and SAM [4]. By comparing
images in CLIP [1] feature space, we are able to
detect semantically meaningful edits while being robust to

subtle and inconsequential pixel intensity changes.
We quantitatively validate the effectiveness of our approach

on two public off-road land navigation datasets: RUGD [15]
and RELLIS [16], and qualitatively evaluate on an underwater
navigation dataset [11].

II. PROBLEM FORMULATION: ANOMALY DETECTION AS
POST-HOC ANALYSIS-BY-SYNTHESIS

Pixel-wise anomaly detection: We consider the problem of
pixel-wise anomaly detection in RGB images. We denote an
RGB image of dimensions H⇥W by x0 2 [0, 1]3HW , with a
zero-subscript1. In our problem setting, we are given a set of
N training images Dtrain = {x(n)

0
}N
n=1

i.i.d⇠ q(x0) assumed
to be sampled i.i.d. from a training distribution2

q(x0). We
refer to q as the “training distribution” or the “in-distribution”.
At test time, we are given an input image xinput

0
. A subset of

its pixels belong to objects that are out-of-distribution (OOD).

1The zero-subscript in x0 is introduced for consistency with notation used for
diffusion models [32] (see Sec. III). It corresponds to the noise level t = 0
implying that no noise has been added to the image. We slightly modify
conventional notation to consistently specify timesteps in the subscript and
model parameters in the superscript when applicable e.g. xt, p✓, ✏✓t , µ✓

t .
2We denote the training distribution by q(·) following Ho et al. [32].



The task is to detect these anomalous pixels in the image.
During training, the anomaly detector is not allowed to make
any assumptions about the nature of OOD examples it can
expect at test time. Anomalies are implicitly defined by how
unlikely the respective object segments are under the training
distribution q(x0).

Analysis-by-synthesis formulation: We formulate the
problem of pixel-wise anomaly detection in three stages.

(i) Training: We train a whole-image generative model
p
✓(x0), parameterized by weights ✓ 2 RW , to fit the training

set Dtrain and learn q(x0). Learning p
✓(x0) ⇡ q(x0) is

the only objective in this stage; training is not specialized
for anomaly detection. This de-coupling of the problem of
learning p

✓ ⇡ q from the task of inferring anomaly segments
given a learned model p✓ allows us to repurpose pre-trained
generative models for anomaly detection.

(ii) Synthesis: Given an input image xinput

0
at test time, we

wish to detect anomaly segments by synthesizing an edited
image using the learned model p✓ ⇡ q. We assume a similarity
metric rsim : R3HW ⇥ R3HW ! R�0 between two images
that quantifies how similar they are. In this work, we use
the Gaussian kernel: rsim(x0

0
,x00

0
) = exp(��kx0

0
� x00

0
k2
2
),

although any non-negative similarity metric can be used.
We define the editing process, i.e., synthesis, as sampling
from the following distribution:

xedit

0
⇠ q(xedit

0
|xinput

0
) / q(xedit

0
)

| {z }
likelihood under training distribution

rsim(x
edit

0
,xinput

0
)

| {z }
similarity to input image

(1)

The distribution in Eq. 1 is a product of two terms. The first
term q(·), which is approximated by the learned generative
model p✓(·), ensures that the edited image xedit

0
is likely under

the training distribution. The second term ensures that xedit
0

is similar to the input image. Sampling from this conditional
distribution synthesizes a new image that effectively “edits”
xinput

0
by removing anomalies but keeping pixels in the in-

distribution regions as close as possible to the input image.
xedit
0

can also be interpreted as a “projection” of xinput

0
onto

the manifold of the training distribution p
✓(x0) ⇡ q(x0).

Sampling from Eq. 1 is a challenging inference problem:
q(x0) is a complex multimodal distribution over natural
images, and multiplying by rsim(·) makes the distribution
unnormalized with an intractable normalizing constant. In this
work, we develop a diffusion guidance approach [34, 38, 39]
to sample from this distribution. The synthesis procedure
is “post-hoc” in the sense that the generative model is not
explicitly trained to perform the editing task; editing is result
of an inference procedure performed at test-time.

(iii) Analysis: We formulate detecting anomalies in xinput

0

as computing the difference between xinput

0
and xedit

0
. As

described in Sec. I, RGB intensities in [0, 1]3 may not be a
suitable space for this comparison. We define the analysis

task as finding an appropriate C-dimensional feature space
f : [0, 1]H⇥W⇥3 ! RH⇥W⇥C so that the anomaly score for
the i-th pixel can be computed as kf(xedit

0
)i � f(xinput

0
)ik.

We use the CLIP [1] feature space for comparison, via a
combination of MaskCLIP [2], FeatUp [3] and SAM [4].

Fig. 3: Probabilistic graphical model for the conditional forward
diffusion process. The target variable we wish to sample is x0.
Directed edges correspond to the standard forward diffusion process.
The unnormalized factor rsim(x0,x

input
0 ) conditions x0 to be similar

to the (fixed) input image.

III. BACKGROUND ON DIFFUSION MODELS

Diffusion models [32, 38, 39] are recently developed,
state-of-the-art generative models effective at learning and
sampling from complex, multi-modal image distributions.
They have been primarily used in the computer vision
community for photorealistic image generation and creative
applications [35, 41], and in the robot learning community
to learn distributions over action trajectories [42, 43]. In
this work, we use diffusion models for anomaly detection in
images. Recall that we denote (noiseless) image vectors by
x0 2 [0, 1]3HW . We train a denoising diffusion probabilistic
model (DDPM) [32] p

✓(x0) to fit the training distribution
q(x0) and sample from it. To do so, DDPM introduces T

latent variables x1, . . . ,xT by the forward diffusion process

q(xt |xt�1) = N
�
xt ;

p
1� �t xt�1,�tI

�
. At each timestep

t, forward diffusion progressively adds a small amount of
i.i.d. Gaussian noise with variance �t > 0 to xt�1. With an
appropriate noise schedule �1:T , the final latent variable xT

is approximately normally distributed i.e. xT ⇠ N (0, I).
Because forward diffusion is Gaussian, latent vari-

ables from intermediate timesteps xt can be directly
sampled from x0 as xt(x0, ✏) =

p
↵t x0 +

p
1� ↵t ✏ where

↵t =
Q

t

s=1
(1� �t) [32, 38] and ✏ ⇠ N (0,1) is a noise

vector sampled from the standard normal distribution. DDPM
trains a neural network ✏✓

t
(xt) with weights ✓ to predict

✏ that generated xt. ✏✓
t

is trained to minimize the loss
1

T

P
T

t=1
Ex0⇠q(x0),✏⇠N (0,I)k✏� ✏✓

t
(xt(x0, ✏))k22. This net-

work allows DDPM to perform reverse diffusion. First, xT ⇠
p
✓(xT ) = N (0, I) is sampled from the standard normal.

Then, xT is progressively denoised to x0. In the limit of small
�t, the reversal of forward diffusion q(xt |xt+1) becomes
Gaussian [38] and can be approximated as q(xt |xt+1) ⇡
p
✓ (xt |xt+1) = N

�
xt ; µ✓

t+1
(xt+1), �̃t+1

�
, where µ✓

t+1
is a

reparametrization of ✏✓
t+1

(see line 5 of Alg. 1). Finally, the
reverse diffusion process produces a sample from p

✓(x0) ⇡
q(x0). We refer to Ho et al. [32] for more details on DDPM.

IV. GUIDANCE GRADIENTS FOR CONDITIONAL DIFFUSION

Given an input image xinput

0
, we are interested in sampling

from q(x0 |xinput

0
) / q(x0) rsim(x0,x

input

0
) as noted in

Eq. 1. To do so, we first define a conditional forward

diffusion process [34] as shown in Fig. 3. It can be denoted
by q(x0:T |xinput

0
) = q(x0 |xinput

0
) q(x1:T |x0), where x0

is hypothetically sampled from our desired conditional
distribution q(x0 |xinput

0
), followed by the standard forward

diffusion process q(x1:T |x0). A compelling property of
diffusion models is that ✏✓

t
can be used to reverse a conditional

forward diffusion processes at test-time without having to
re-train ✏✓

t
. Specifically, classifier guidance [34, 38–40] can



Algorithm 1: Inputs: (1) ✏✓
t

: denoising diffusion model fit to training image distribution q(x0). (2) xinput

0
: input image at test-time

potentially containing anomaly segments. (3) rsim: similarity metric between two images. We use rsim(x,y) = exp
�
��kx� yk22

�
.

Output: xedit
0

: edited version of xinput
0 sampled from q(x0) rsim(x0,x

input
0 ) that removes anomalies. While standard reverse diffusion

(lines 5, 10) is designed to sample from q(x0), the image similarity metric rsim(x0,x
input
0 ) guides the generated image x0 to be close to

xinput
0 using guided diffusion [34, 38]. This is achieved by including the log-gradient of rsim (line 8a). A key question during intermediate

timesteps t is what pair of images should the similarity metric compare? A naı̈ve approach [38] (line 8b) simply uses the intermediate
sample xt and xinput

0 ; they however correspond to different noise levels and should not be compared directly. Another baseline attempts to
bring xinput

0 to timestep t by expected forward diffusion (lines 7c, 8c). Instead, we propose using the trained diffusion model to estimate
the expected noise-free version µ✓

0(xt) of xt to compare with the input image xinput
0 at t = 0. While this requires a backward pass

through the diffusion model (line 8a), we show that our approach is mathematically principled and empirically leads to better performance.

be used in the special case where one wishes to sample from
q(x0 | y) / q(x0) q(y |x0) i.e., the conditioning factor takes
the form of a classifier q(y |x0), Classifier guidance adds
a gradient step gt(xt) = rxt log p(y |xt) at each reverse
diffusion step, shown in line 8 (a, b, c) of Alg. 1. Intuitively,
the guidance gradient encourages the conditioning factor of
the resulting xt to increase, while balancing with the original
objective of sampling from q(x0).

Mismatched-timesteps baseline: In our case, the conditioning
factor is not a classifier but is of the form rsim(x0,xinput).
A naı̈ve application of classifier guidance, as used in Sohl-
Dickstein et al. [38], would be to choose the guidance gradient
as gt(xt) = rxt log rsim(xt,x

input

0
); see line 8b of Alg. 1.

However, this formulation compares a noiseless image xinput

0

with a noisy image xt corresponding to the noise level at
timestep t. The mismatch between the timesteps of the two
images being compared leads to poor performance.

Forward timestep matching baseline: A heuristic approach
to match the timesteps of the images is to add noise to the
input image. We call this the “forward timestep matching”
baseline (lines 7c, 8c in Alg. 1). In this baseline, xinput

0
is

transported to timestep t via forward diffusion. The noised
image xinput

t
is then compared with xt. We now derive a

more principled method for guided conditional diffusion, and
show that the correct way to match image timesteps is in the
reverse direction.

V. GENERALIZED SIMILARITY-CONDITIONED GUIDED
DIFFUSION AND A PRINCIPLED APPROXIMATION

Conventional classifier guidance is restricted to using a
classifier as the conditioning factor. Furthermore, it also
requires training a classifier p(y |xt) for each intermediate

latent state [34, 39]. Instead, we extend classifier guidance
to the more general setting where the conditioner can be any
non-negative function:

Theorem 1: When a diffusion model ✏✓
t

is trained to sample
from q(x0:T ), the conditional distribution q(x0:T |xinput

0
) /

q(x0:T ) rsim(x0,x
input

0
) can be sampled by using the ideal-

ized guidance gradient g⇤
t
(xt) during reverse diffusion:

g⇤
t
(xt) = rxt log

Z

x0

q(x0 |xt) rsim(x0,x
input

0
) dx0

= rxt logEq(x0 |xt)

h
rsim(x0,x

input

0
)
i

(2)

See proof in App. I. Intuitively, this gradient guides xt to
increase the expected similarity of its denoised version x0 ⇠
q(x0 |xt) with xinput

0
. The timesteps of the two images being

compared now match, and correspond to t = 0, i.e., zero noise.
This makes sense, as we want the eventually denoised image
(not the intermediate noisy images) to match the input image.
Unfortunately, the guidance gradient is intractable to compute
due to the high-dimensional expectation over q(x0 |xt).
We propose approximating Eq(x0 |xt)

⇥
rsim(x0,x

input

0
)
⇤

by a
point estimate of q(x0 |xt), namely, its expected value:

g⇤
t
(xt) = rxt logEq(x0 |xt)

h
rsim(x0,x

input

0
)
i

⇡ rxt log rsim
⇣
Eq(x0 |xt)

[x0] ,x
input

0

⌘

⇡ rxt log rsim
⇣
µ✓

0
(xt) , x

input

0

⌘
= g✓

t
(xt) (3)

The point estimate Eq(x0 |xt)
[x0] can be computed analyt-

ically by the diffusion model, which we denote by µ✓
0
(xt).

The expression of µ✓
0
(xt) in terms of ✏✓

t
(xt) is shown in

line 7a of Alg. 1, and derived in detail in App. II. Intuitively,
since ✏✓

t
(xt) is trained to predict the expected noise ✏ that



produced xt from x0, the expected value of x0 given xt can
be computed by subtracting (a scaled version of) ✏✓

t
(xt) from

xt. Therefore, our proposed guidance gradient transforms xt

in the reverse direction to t = 0, matching xinput

0
.

Another way to see why our approximation is principled is
to examine its value when t ⇡ T . In forward diffusion, x0 and
xT are independently distributed [38, 39]. This implies that at
the beginning of reverse diffusion, the ideal guidance gradient
g⇤
T
(xT ) = 0 for all xT (since the expectation in Eq. 2 is con-

stant with respect to xT , therefore the gradient is zero). This
property holds for our approximation g✓

T
(xT ). Assuming that

the diffusion model is well-trained, µ✓
0
(xT ) ⇡ Eq(x0 |xT ) [x0]

is a constant function of xT due to the independence of x0 and
xT . Therefore g✓

T
(xT ) = rxT log rsim(µ✓

0
(xT ),x

input

0
) ⇡ 0.

However, this property is violated by both baseline guidance
gradients gT (xT ) (lines 8b, 8c of Alg. 1), which, in general,
can be non-zero.

As far as we are aware, ours is the first work to leverage

the learned diffusion model ✏✓
t
(xt) to compute the guidance

gradient g✓
t
(xt). Furthermore, our method backprops through

the network ✏✓
t
(xt) at test time in order to compute g✓

t
(xt).

In contrast, the baseline guidance gradients gt(xt) are purely
analytical and do not use the diffusion model. We show in
Sec. VII that utilizing the diffusion model to compute the
guidance gradient improves anomaly detection performance.

VI. EXTRACTING ANOMALY SEGMENTS FROM
DIFFUSION-EDITED IMAGE USING VLP MODELS

The diffusion model allows us to synthesize an edited
image xedit

0
by replacing the anomalous regions of xinput

0

with content similar to the training distribution. Now, we
wish to analyze the difference between the two images to
detect the modified anomaly segments. Our pipeline is shown
in Fig. 2. We found that directly comparing pixel intensities
between the two images produces very noisy anomaly masks
(shown in the extreme right of Fig. 2). Although the most
salient edits made by the diffusion model are the removal of
anomaly regions, the model also makes subtle changes across
the entire image. Instead, we propose comparing the two
images in a feature space that is invariant to subtle intensity
changes. We wish to capture higher-level semantic changes,
such as the replacement of the brown vehicle with mud in
Fig. 2, even though they have similar RGB values.

Our pipeline leverages pre-trained vision-language models.
First, we use MaskCLIP [2] to compute CLIP features [1] for
each image. Because MaskCLIP has a large receptive field,
it downsamples an input image of size 224⇥224 to 14⇥14.
Then, we use FeatUp [3] to upsample the CLIP features back
to the full image resolution. FeatUp is designed to upsample
feature embeddings to align them with object boundaries [3].
Finally, we compute an anomaly score for each pixel as the
cosine distance between corresponding CLIP feature vectors.
While this distance-based mask is able to highlight anomaly
segments well, we further refine it using the SegmentAnything
Model (SAM) [4]. SAM produces a set of accurate, open-
world segments per image; we simply assign to each SAM
segment the average cosine distance score averaged across

all pixels in that segment. This approach combines SAM’s
fine segmentation capability with our coarser difference-based
anomaly identification.

VII. EXPERIMENTS

A. Dataset and experimental design

We wish to identify pixels belonging to OOD anomaly
objects. From the full semantic label set C = {1, . . . , C},
we define a subset CID ⇢ C as the set of in-distribution
classes, and the remaining subset COOD = C \ CID as out-
of-distribution classes. We split the overall dataset such that
pixels in the training dataset Dtrain belong exclusively to
CID, whereas test images contain pixels drawn from both
CID and COOD. Importantly, we assume that the learner has
no access to any amount of real or synthetic OOD data at
training time, and we do not make any assumptions about the
nature of OOD data that the model can expect at test time.

We quantitatively validate our approach using two off-
road land navigation datasets: the RUGD [15] dataset and
the RELLIS-3D [16] dataset. Both are real-world datasets
containing camera images collected in off-road environments
using mobile robot platforms with manually labeled pixel-
wise class annotations. They contain 7,453 and 6,235 labeled
images, respectively. We split the semantic categories into
in-distribution labels that contains mostly natural features and
vegetation such as dirt, grass, sky etc., whereas classes
like vehicle, building, person are defined as out-of-
distribution. See App. III for a full list of in-distribution and
out-of-distribution classes for each dataset.

B. Evaluation metrics

We evaluate our approach using the following metrics.
The results of our evaluation are presented in Table I.
(i) AUC-PR: We compute the area under the precision-
recall curve between the per-pixel anomaly score, and the
ground-truth classification of the pixel as in-distribution.
(ii) F

⇤
1

score: We borrow this metric from existing anomaly
detection benchmarks for structured urban-driving scenes [49].
The F⇤

1
-score summarizes true positive, false positive and

false negative detections averaged over different detection
thresholds, and normalized by the size of ground- truth
segments to prevent large objects dominating the metric. Not
all classes in CID are equally in-distribution; some classes (e.g.
grass) occur more frequently than others (e.g. rock-bed).
Therefore, we weight the classes in CID by their frequency in
the training dataset when computing AUC-PR and F⇤

1
scores.

C. Baselines and ablations

We compare against multiple baselines in Table I. SSIM

(row 1): We use the structural similarity index (SSIM) [44] as
an anomaly score that compares images using pixel intensities
(and not a learned feature space). Baselines 2-4 represent the
conventional paradigm of directly predicting anomaly scores
from pixels. We fit a GMM (row 2) with 20 components
on pixel-level MaskCLIP [2] features and uses the negative
log-likelihood as the anomaly score. Nearest-neighbor search

(row 3): is akin to memorizing the training dataset. We collect



RUGD dataset [15] RELLIS dataset [16]
AUC-PR (") F⇤

1 score (") AUC-PR (") F⇤
1 score (")

1 SSIM [44] 0.293 0.410 0.278 0.506
2 GMM w/ MaskCLIP [2] + SAM 0.554 0.587 0.549 0.534
3 Nearest neighbor search w/ MaskCLIP [45] + SAM 0.705 0.629 0.536 0.498
4 Normalizing flow [17] w/ MaskCLIP [2] + SAM 0.616 0.596 0.541 0.545
5 Guided diffusion without timestep matching [38] 0.629 0.591 0.462 0.522B

a
s
e
li

n
e
s

6 Guided diffusion with forward timestep matching 0.697 0.578 0.462 0.514
7 Ours with ResNet [46] 0.424 0.524 0.255 0.484
8 Ours without SAM [4] 0.645 0.737 0.396 0.546
9 Ours with RGB features 0.302 0.591 0.144 0.482

10 Ours with DINOv2 [45] 0.685 0.598 0.416 0.518
11 Ours with ViT [47] 0.692 0.571 0.255 0.493
12 Ours with CLIP [1] 0.694 0.585 0.499 0.532

A
b

la
ti

o
n

s

13 Ours with DINOv1 [48] 0.665 0.622 0.416 0.521
14 Ours without FeatUp 0.724 0.858 0.475 0.549

O
u

r
s

15 Ours (Reverse matching + MaskCLIP + SAM) with FeatUp 0.709 0.599 0.568 0.540

TABLE I: Anomaly detection accuracy on RUGD [15] dataset and the RELLIS-3D [16] dataset. Our methods (in green) are compared
against baselines (in red), and ablations (in blue) removing or changing one component of our method at a time. See text for details.

50,000 MaskCLIP pixel feature vectors sampled from training
images. For a given feature vector of pixel i at test time, we
output the distance of the nearest neighbor in the collected set.
This is treated as the anomaly score. Normalizing flow [17, 20]
(row 4): We train a normalizing flow on MaskCLIP pixel
features from the training set similar to the GMM baseline.
We follow Ancha et al. [17] and use a GMM as a stronger base
distribution. Negative log-likelihoods of the normalizing flows,
which can be computed exactly [50], are used as anomaly
scores. Diffusion guidance baselines: We compare against
vanilla guided diffusion with no timestep matching [38]
(line 8b of Alg. 1), and forward timestep matching (lines
7c, 8c of Alg. 1). We also perform ablation experiments in
rows 7-14, by either removing one of our contributions at
a time, or changing the VLP feature space in the analysis
component. We find that our method outperforms all baselines
and ablations, on both datasets and evaluation metrics. On
RUGD, we find that not using FeatUp [3] can improve
quantitative performance. We hypothesize that this might
be because FeatUp can average upsampled pixel features near
segment boundaries, affecting the resulting cosine distances.
However, FeatUp can be useful for certain applications where
high-resolution is crucial when detecting anomalies. We use
FeatUp when generating all visualizations in this paper.

We also apply our method to an under-water navigation
dataset [11] where the training distribution contains images
of the ocean bed, corals and plants. We are unable to
perform a quantitative evaluation due to the lack of ground
truth semantic segmentation labels. We qualitatively evaluate
our method on anomalous images that contain fish, divers
and robots in Fig. 1. We observe that the diffusion model
makes interesting edits to the input image. It either removes
anomalies altogether, or blends them into the background.
Both types of edits are detected by our analysis pipeline. See
our project website and appendix for more qualitative results.

VIII. RELATED WORK

Prior work on anomaly detection [51] has predominantly
focused on discriminative models that directly map pixels

to anomaly scores, classifying features at the pixel- or
segment- level as in-distribution or anomalies [17–31] using
principal component analysis (PCA) [52–54], random feature
projection [55–57], novelty functions [58, 59], feature-space
comparison of neural embeddings [60–63] and more recently,
evidential uncertainty estimation [19, 20, 64] for off-road
navigation [17, 65–67]. Other works that take an analysis-by-
synthesis [36, 37] approach use generative models such as
autoencoders [68, 69] and GANs [70–74]. However, these
approaches can suffer from high false-positive rates [51, 68].
More recently, a small set of works have employed diffusion
models for anomaly detection [75–78]. However, these works
focus on specialized domains like medical imaging [75, 76]
and industrial inspection [77, 78]; to the best of our knowl-
edge, we are the first to use this approach for natural images
in off-road navigation. Furthermore, Zhang et al. [77] train
on synthetic anomaly examples, whereas our method does
not require real or synthetic OOD examples during training.

IX. CONCLUSIONS

In this work, we presented an analysis-by-synthesis approach
for pixel-wise anomaly detection in off-road images. Given an
input image, we used a diffusion model to synthesize an edited
image that removes anomalies while keeping the remaining
image unchanged. We then formulated anomaly detection
as analyzing which image segments were modified by the
diffusion model. We proposed a novel inference approach for
guided diffusion by theoretically analyzing the ideal guidance
gradient and deriving a principled approximation. Unlike
prior methods, this approach bootstraps the diffusion model
to predict edits to the image. Our editing technique is purely
test-time and be integrated into existing workflows without
re-training or finetuning. Finally, we presented a combination
of vision-language foundation models to compare pixels
in a more semantically meaningful feature space in order
to identify segments that were modified by the diffusion
model. We hope this work paves the way towards generative
approaches for accurate and interpretable anomaly detection
for off-road navigation.

https://bit.ly/anomalies-by-synthesis
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