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LiDARs perform fixed scans

• Sparse point clouds. 
• Expensive: Velodyne 64 beam LiDAR can cost > $80,000.

LiDAR



• Sparse point clouds. 
• Expensive: Velodyne 64 beam LiDAR can 

cost > $80,000.

LiDAR
• Dense point cloud where curtain is placed. 
• Inexpensive: 

Lab-built prototype costs ~$1000.

Light Curtain

*Agile Depth Sensing Using Triangulation Light Curtains, Bartels et. al. 2019

Light curtains are controllable



 
Active Detection using Light Curtains

SCENE



 

SINGLE  
BEAM LIDAR

*White: more uncertain   Black: less uncertain

Single-beam LiDAR produces sparse points



 

1ST LIGHT CURTAIN

Light curtain improves detection



 
Light curtain improves detection

2ND LIGHT CURTAIN



“Agile Depth Sensing Using Triangulation Light Curtains”, Bartels et. al.
http://www.cs.cmu.edu/~ILIM/agile_depth_sensing

Background: what are light curtains?



“Agile Depth Sensing Using Triangulation Light Curtains”, Bartels et. al.
http://www.cs.cmu.edu/~ILIM/agile_depth_sensing

A light curtain has two major components

CameraLaser
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“Agile Depth Sensing Using Triangulation Light Curtains”, Bartels et. al.
http://www.cs.cmu.edu/~ILIM/agile_depth_sensing



Light curtain working principle

“Agile Depth Sensing Using Triangulation Light Curtains”, Bartels et. al.
http://www.cs.cmu.edu/~ILIM/agile_depth_sensing

control points



“Agile Depth Sensing Using Triangulation Light Curtains”, Bartels et. al.
http://www.cs.cmu.edu/~ILIM/agile_depth_sensing

Light curtain output



Light curtain constraints

x
Z(top-down view)

Control points

Light curtain

Light curtain velocity constraint

Camera Laser

Light curtain device

θlas Laser max 
velocity limit

Camera sweep 
time between 
consecutive 

rays 

 θlas ≤ ωmax ⋅ Δt



Detections

Uncertainty map

Active 3D Detection Pipeline

Single-beam LiDAR

Point cloud detector



Detector Uncertainty

Lowest uncertainty 
(low/high confidence)

Highest uncertainty 
(medium confidence)

Binary detection 

0 ≤ pk ≤ 1

Anchor Box 
(top down view)

Detections

pk > threshold
pk = confidence

Ak

Uncertainty map 
(top-down view)X

Z



Binary entropy
H(p) = − p log2 p − (1 − p) log2(1 − p)

0 1

1

p

H(p)

0

Confidence → Uncertainty

Uncertainty map 
(top-down view)X

Z



Uncertainty map 
(top-down view)X

Z

Maximizing Information Gain

Assumption 2 
a light curtain resolves uncertainties fully and locally

=                       Σ ( )
= , where -th anchor lies under the curtain 

          

∑
k

H(pk) k

Information Gain 
=  after placement -  before placement
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Assumption 1 
probabilities at each anchor locations are independent

H(p1:k) = ∑
k

H(pk)



Uncertainty map 
(top-down view)X

Z

Maximization Objective

Objective to place light curtains: 

Maximize the sum of binary entropies of 
regions covered by the light curtain!



Light curtain parametrization

x
Z(top-down view)

Control points

Light curtain

Light curtain constraint

Camera Laser

Light curtain device

θlas Laser max 
velocity limit

Camera sweep 
time between 
consecutive 

rays 

 θlas ≤ ωmax ⋅ Δt



Constructing a Constraint Graph

x
Z(top-down view)

Camera Laser

Light curtain device

Step 1 
Select equally spaced points as candidate control 
points on each camera ray. These are the nodes 
of the graph.

Graph node
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Constructing a Constraint Graph

x
Z(top-down view)

Camera Laser

Light curtain device

Step 1 
Select equally spaced points as candidate control 
points on each camera ray. These are the nodes 
of the graph.

Graph node

Then, any path in the graph is a valid curtain!

Step 2 
For each node, consider all nodes on the next ray.

Graph edge

Add those nodes that satisfy the velocity 
constraint    as edges.θlas ≤ ωmax ⋅ Δt



Uncertainty maximizing Light Curtain

x
Z(top-down view)

Camera Laser

Light curtain device

Step 1 
Construct the constraint graph

Graph node Graph edge

Step 2 
Assign uncertainty to each node by interpolating 
from the uncertainty map

Step 3 
Perform dynamic programming



Dynamic Programming

x
Z(top-down view)

Camera Laser

Light curtain device

Graph node Graph edge

For each node, find the partial curtain starting 
from that node  that maximizes sum of 
uncertainties
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• Start from nodes on rightmost ray. 
Partial curtain starts and ends there.

For each node, find the partial curtain starting 
from that node  that maximizes sum of 
uncertainties



Dynamic Programming

x
Z(top-down view)

Camera Laser

Light curtain device

Graph node Graph edge

• Start from nodes on rightmost ray. 
Partial curtain starts and ends there.

• For each node in the previous ray 
• Look at all its edges

For each node, find the partial curtain starting 
from that node  that maximizes sum of 
uncertainties



Dynamic Programming

x
Z(top-down view)

Camera Laser

Light curtain device

Graph node Graph edge

• For each node in the previous ray 
• Look at all its
• Select the one with highest uncertainty. 

Add own uncertainty to the sum.

For each node, find the partial curtain starting 
from that node  that maximizes sum of 
uncertainties

• Start from nodes on rightmost ray. 
Partial curtain starts and ends there.



Dynamic Programming

x
Z(top-down view)

Camera Laser

Light curtain device

Graph node Graph edge

• For each node in the previous ray 
• Look at all its
• Select the one with highest uncertainty. 

Add own uncertainty to the sum.
• Repeat for all nodes in ray

For each node, find the partial curtain starting 
from that node  that maximizes sum of 
uncertainties

• Start from nodes on rightmost ray. 
Partial curtain starts and ends there.



Dynamic Programming

x
Z(top-down view)

Camera Laser

Light curtain device

Graph node Graph edge

• For each node in the previous ray 
• Look at all its
• Select the one with highest uncertainty. 

Add own uncertainty to the sum.
• Repeat for all nodes in ray

• Repeat over each previous ray

For each node, find the partial curtain starting 
from that node  that maximizes sum of 
uncertainties

• Start from nodes on rightmost ray. 
Partial curtain starts and ends there.
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Dynamic Programming
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Dynamic Programming

x
Z(top-down view)

Camera Laser

Light curtain device

Graph node Graph edge

For each node, find the partial curtain starting 
from that node  that maximizes sum of 
uncertainties

• Select the      in the first ray that has the highest 
sum.



Dynamic Programming

x
Z(top-down view)

Camera Laser

Light curtain device

Graph node Graph edge

For each node, find the partial curtain starting 
from that node  that maximizes sum of 
uncertainties

• Select the      in the first ray that has the highest 
sum.

• Backtrack connecting each node to its best 
neighbor.

This is the light curtain that maximizes the sum of 
uncertainties!
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Uncertainty map 
(top-down view)

Result
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Successive light curtain placements improve 
detection performance
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Successive light curtain placements improve 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Successive light curtain placements improve 
detection performance
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Successive light curtain placements improve 
detection performance
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Performance generalizes to additional curtains

Generalization in Virtual KITTI Generalization in SYNTHIA



Performance generalizes to additional curtains
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(zoomed in)
Detecting false negatives missed by LiDAR
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(zoomed in)
Detecting false negatives missed by LiDAR

*White: more uncertain   Black: less uncertain

SINGLE  
BEAM LIDAR



(zoomed in)
Detecting false negatives missed by LiDAR

1ST LIGHT CURTAIN



(zoomed in)
Removing false positives detected by LiDAR
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Removing false positives detected by LiDAR
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(zoomed in)
Removing false positives detected by LiDAR

1ST LIGHT CURTAIN



(zoomed in)
Removing false positives detected by LiDAR

2ND LIGHT CURTAIN



Correcting misaligned detection
(zoomed in)

SCENE



Correcting misaligned detection

*White: more uncertain   Black: less uncertain

(zoomed in)
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Correcting misaligned detection
(zoomed in)

1ST LIGHT CURTAIN



Failure case: many curtains might be required
(zoomed in)
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Failure case: many curtains might be required
(zoomed in)
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*White: more uncertain   Black: less uncertain

Failure case: many curtains might be required
(zoomed in)

3RD LIGHT CURTAIN



*White: more uncertain   Black: less uncertain

Failure case: many curtains might be required



Conclusions
•  We propose for a method for active detection 
using light curtains for autonomous driving.

•  We derive an information-gain based objective for 
light curtain placement.

•  We propose a novel optimization algorithm by 
encoding the light curtain constrains into a 
constraint graph, and using dynamic programming 
to maximize the objective.

•  We show that our method can successively 
improve detection accuracy of LiDAR, and is a step 
towards replacing expensive multi-beam LiDAR 
systems with inexpensive controllable sensors.

Dynamic Programming

Active Detection

Light Curtain
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