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LIDARSs perform fixed scans

LIDAR

e Sparse point clouds.
 Expensive: Velodyne 64 beam LiDAR can cost > $80,000.



Light curtains are controliable
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LiDAR Light Curtain
e Sparse point clouds. e Dense point cloud where curtain is placed.
e EXxpensive: Velodyne 64 beam LIDAR can  |nexpensive:
cost > $80,000. Lab-built prototype costs ~$1000.

*Agile Depth Sensing Using Triangulation Light Curtains, Bartels et. al. 2019






*White: more uncertain Black: less uncertain



1ST LIGHT CURTAIN




2ND LIGHT CURTAIN




Background: what are light curtains?

“Agile Depth Sensing Using Triangulation Light Curtains”, Bartels et. al.
http://www.cs.cmu.edu/~ILIM/agile depth sensing



A light curtain has two major components
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“Agile Depth Sensing Using Triangulation Light Curtains”, Bartels et. al.
http://www.cs.cmu.edu/~ILIM/agile depth sensing
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Rolling-shutter camera
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Rolling-shutter camera

Camera rays
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Rolling-shutter camera

Camera rays
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Rolling-shutter camera

Camera rays
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Programmable Light Curtain Principle

“Agile Depth Sensing Using Triangulation Light Curtains”, Bartels et. al.
http://www.cs.cmu.edu/~ILIM/agile depth sensing



Light curtain working principle

O control points O curtain profile
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rolllng i discrete camera
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Light Sheet Projector 2D Camera

“Agile Depth Sensing Using Triangulation Light Curtains”, Bartels et. al.
http://www.cs.cmu.edu/~ILIM/agile depth sensing



Light curtain output
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“Agile Depth Sensing Using Triangulation Light Curtains”, Bartels et. al.
http://www.cs.cmu.edu/~ILIM/agile depth sensing



Light curtain constraints

O Control points

Light curtain

Light curtain velocity constraint

Hlas < Wmax AV

(top-down view) v
Laser max Camera sweep
velocity limit  time between
consecutive

rays
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Active 3D Detection Pipeline

Point cloud detector Detections

voxelized
point cloud

box regressor

detection
backbone
extractor head

single-beam lidar

Single-beam LIDAR

= = 0 lightcurtain



Detector Uncertainty

Binary detection

Anchor Box Detections
(top down view)
0<p <1
= Pie = pi > threshold
Pr = confidence

Lowest uncertainty
(low/high confidence)

Highest uncertainty
(medium confidence)

Uncertainty map
(top-down view)



Confidence — Uncertainty

Binary entropy

.-.- H(p) = —plog, p— (1 —p) log,(1 —p)
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Maximizing Information Gain

Assumption 1
probabilities at each anchor locations are independent

H(py) = Z H(py)
k

..l Assumption 2
Iess—__| _| a resolves uncertainties fully and locally
__|.| Information Gain
... = H after placement - H before placement
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Maximization Objective

Objective to place light curtains:

Maximize the sum of binary entropies of
regions covered by the light curtain!

Uncertainty map
(top-down view)




Light curtain parametrization

O Control points

Light curtain

Light curtain constraint

Hlas < Dmax At

v
Laser max Camera sweep
velocity limit time between
consecutive
rays

(top-down view)

Camera [ aser



Constructing a Constraint Graph

Step 1 ® Graph node
Select equally spaced points as candidate control

points on each camera ray. These are the nodes
of the graph.

Camera [ aser



Constructing a Constraint Graph

® Graph node
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Constructing a Constraint Graph

® Graph node
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Constructing a Constraint Graph

® Graph node
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Constructing a Constraint Graph

® Graph node
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Constructing a Constraint Graph
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Constructing a Constraint Graph
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Constructing a Constraint Graph
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Uncertainty maximizing Light Curtain
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Dynamic Programming
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Dynamic Programming
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Dynamic Programming
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Dynamic Programming
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Dynamic Programming
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Dynamic Programming

® Graph node - Graph edge

partial curtain

e Start from nodes on rightmost ray.
o, | |
® @ Partial curtain starts and ends there.

® ~or each node In the previous ray
® | 0Ok at all its

e Select the one with highest uncertainty.
Add own uncertainty to the sum.

® Repeat for all nodes in ray

(top-down view)
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Dynamic Programming
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Dynamic Programming
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Dynamic Programming
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Dynamic Programming
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Dynamic Programming
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Uncertainty map
(top-down view)
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Successive light curtain placements improve
detection performance

Virtual KITTI
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Successive light curtain placements improve
detection performance

Virtual KITTI
0.5 loU
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3D mAP

B LiDAR B 1 Light curtain



Successive light curtain placements improve
detection performance

Virtual KITTI
0.5 loU
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2ND LIGHT CURTAIN

3D mAP

B LiDAR B 1 Light curtain - 2 Light curtains .



Successive light curtain placements improve
detection performance

Virtual KITTI
0.5 loU

3RD LIGHT CURTAIN

3D mAP

B LiDAR B 1 Light curtain o 2 Light curtains . 3 Light curtains :



Successive light curtain placements improve
detection performance

Virtual KITTI
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Performance generalizes to additional curtains

Generalization in Virtual KITTI Generalization in SYNTHIA
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Performance generalizes to additional curtains

Generalization in Virtual KITTI Generalization in SYNTHIA

Train Test Train Test




Performance generalizes to additional noise

Single-beam LiDAR 1st [ight curtain 2nd light curtain 3rd light curtain

B Without noise B With noise



Comparison to baselines
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Comparison to baselines
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Comparison to baselines
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Comparison to baselines
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Comparison to baselines
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Comparison to baselines
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Detecting false negatives missed by LIDAR
(zoomed in)




Detecting false negatives missed by LIDAR
(zoomed in)

*White: more uncertain Black: less uncertain



Detecting false negatives missed by LIDAR
(zoomed in)

1ST LIGHT CURTAIN




Removing false positives detected by LIDAR
zoomed In




Removing false positives detected by LIDAR
(zoomed in)
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Removing false positives detected by LIDAR

(zoomed In)

.......

e TN w&‘%ﬂz.

0.33

1ST LIGHT CURTAIN




Removing false positives detected by LIDAR

(zoomed In)
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Correcting misaligned detection
(zoomed in)




Correcting misaligned detection
(zoomed in)
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Correcting misaligned detection
(zoomed in)

1ST LIGHT CURTAIN




Failure case: many curtains might be required
(zoomed In)
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Failure case: many curtains might be required
(zoomed In)
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Failure case: many curtains might be required
(zoomed in)
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Failure case: many curtains might be required

Dense Depth Map (visualization only)

Uncertainty Map + Sensor Readings Cumulative Detector Input + Detections

*White: more uncertain Black: less uncertain



Active Detection

Conclusions
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» We propose for a method for active detection
using light curtains for autonomous driving.

» We derive an information-gain based objective for
light curtain placement.

» We propose a novel optimization algorithm by
encoding the light curtain constrains into a
constraint graph, and using dynamic programming
to maximize the objective.

» We show that our method can successively
improve detection accuracy of LIDAR, and is a step
towards replacing expensive multi-beam LIDAR
systems with inexpensive controllable sensors.
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