
Appendix

Active Safety Envelopes using Light Curtains with
Probabilistic Guarantees

Siddharth Ancha Gaurav Pathak Srinivasa G. Narasimhan David Held
Carnegie Mellon University, Pittsburgh PA 15213, USA

{sancha, gauravp, srinivas, dheld}@andrew.cmu.edu

Website: https://siddancha.github.io/projects/active-safety-envelopes-with-guarantees

A. Transition distributions for sampling random curtains

We first describe, in Algorithm 1 the procedure to sample
a random curtain from the extended constraint graph G by
successively generating it using a transition probability func-
tion P (Xt+1 | Xt�1,Xt). The only constraint on P (Xt+1 |
Xt�1,Xt) is that it must equal to 0 if Xt�1,Xt,Xt+1 do
not satisfy both the velocity and acceleration constraints of
Equations (1, 2).

Algorithm 1: Sampling a random curtain from G
/* Inputs */
G extended constraint graph
P (Xt+1 | Xt�1,Xt) transition prob. distribution
P ((X1,X2)) initial probability distribution

/* Progressively generate curtain */
Curtain {}

/* Initialization */
Sample (X1,X2) ⇠ P ((X1,X2))
Curtain {X1,X2}

/* Iteration */
for t = 2 to T � 1 do

Xt+1 ⇠ P (Xt+1 | Xt�1,Xt)
Curtain Curtain [{Xt+1}

return Curtain

We initialize by sampling a location N2 = (X1,X2)
according to an initial sampling distribution. At the (t� 1)-th
iteration, we will have sampled the t� 1 nodes (N2, . . . ,Nt)
corresponding to the first t control points (X1, . . . ,Xt) of
the random curtain. At the t-th iteration, we sample Xt+1

according to the transition probability distribution Xt+1 ⇠
P (Xt+1 | Xt�1,Xt) and add Xt+1 to the current set of
control points. After all iterations are over, this algorithm

generates a complete random curtain.
The above procedure to sample random curtain provides the

flexibility to design any initial and transition probability distri-
bution functions. Then, what are good candidate distributions?
We use random curtains to detect the presence of objects in the
scene whose location is unknown. Hence, the objective is to
find the light curtian sampling distribution that maximizes the
probability of detection of an object that might be placed at any
arbitrary location in a scene. This objective will be achieved
by random curtains that cover a large area. We now discuss
a few sampling methods and qualitatively evaluate them in
terms of the area covered by random curtains generated from
them.

1. Uniform neighbor sampling: Perhaps the simplest
transition probability distribution P (Xt+1 | Xt�1,Xt)
for a given extended node (Xt�1,Xt) is to select a
neighboring control point Xt+1 (that is connected by a valid
edge originating from the node) with uniform probability.
However, since the distribution does not take into account
the physical locations of the current control point, it does
not explicitly try to maximize coverage. To illustrate this,
consider a random curtain that starts close to light curtain
device. If it were to maximize coverage, the galvanometer
would need to rotate so that the light curtain is placed farther
from the device on subsequent camera rays. However, since
its neighboring nodes are selected at random, the sampled
locations on the next ray are equally likely to be nearer to the
device than farther away from it. This can produce random
curtains as shown in Fig. 7 (a).

2. Uniform linear setpoint sampling: a more principled
way to sample neighbors is inspired by rapidly-exploring
random trees (RRTs), which are designed to quickly explore
and cover a given space. During tree expansion, an RRT
first randomly samples a setpoint location, and selects the
vertex that is closest to that location. We adopt a similar
procedure. For any current node (Xt�1,Xt), we first sample
a setpoint distance r 2 [0, rmax] uniformly at random on a
line along the camera ray. The probability density of r is

(a) Uniform sampling of neighbors (b) Uniform linear sampling of setpoints (c) Uniform area sampling of setpoints

Fig. 7: Qualitative comparision of the coverage of random light curtains under different transition probability distributions.
Sampled random curtains are shown in red. (a) Uniform neighbor sampling: for a given node, its neighbors on the next camera
ray are sampled uniformly at random. This can produce random curtains that are at a constant distance away from the device.
(b) Uniform linear setpoint sampling: for every camera ray, a setpoint distance r 2 [0, rmax] is sampled uniformly at random.
Then the neighbor closest to the setpoint is chosen. This has significantly higher coverage, but is biased towards sampling
locations close to the device. (c) Uniform area setpoint sampling: for every camera ray, a setpoint distance r 2 [0, rmax] is
sampled with a probability proportional to r. This assigns a higher probability to a larger r, and corresponds to uniform area

sampling. Then the neighbor closest to the setpoint is chosen. This method qualitatively exhibits the best coverage.

a constant and equal to P (r) = 1/rmax. Then, we select a
valid neighbor Xt+1 that is closest to this setpoint location
among all valid neighbors. Let us again consider the situation
described in the previous approach, where the current node is
located close to the light curtain device. When a setpoint is
sampled uniformly along the next camera ray, there is high
probability that it will correspond to a location that is farther
away from the current node. Hence, the neighboring location
Xt+1 that is chosen on the next ray will likely lie away from
the device as well. A random curtain sample generated from
this distribution is shown in Fig. 7 (b). It tends to alternate
between traversing near regions and far regions of the space
in front of the curtain, covering a larger area than the previous
sampling approach.

3. Uniform area setpoint sampling: We use the setpoint
sampling approach described above, but revisit how the set-
point itself is sampled. Previously, the setpoint r 2 [0, rmax]
was sampled uniformly at random on the line along the ray,
with P (r) = 1/rmax. Now, we propose an alternate sampling
distribution and provide some theoretical justification. Since
we want to uniformly cover the area in front of the light
curtain device, consider the following experiment. Let us
sample a point (x, y) uniformly from the area within a circle of
radius rmax (or equivalently, within any sector of that circle).
Then the cumulative distribution function of r =

p
x2 + y2

is P (r < r
0) = ⇡r

02
/⇡r

2
max (area of the smaller circle

divided by the area of entire circle), which implies that the
probability density function of r is equal to P (r) = 2r/r2max.
This suggests that we must assign a higher probability to a
larger r (proportional to r), since a larger area exists away
from the center of the circle than near the center. Hence, we

sample the setpoint r from P (r) = 2r/r2max, by first sampling
s ⇠ Uniform(0, r2max) and then setting r =

p
s. Finally, we

select the valid neighbor Xt+1 on the next ray that is closest to
this setpoint. Since this method is motivated by sampling areas
rather than sampling along a line, we call this approach “area
setpoint sampling”. An example curtain sampled using this
approach is visualized in Fig. 7 (c), which generally exhibits
the best coverage among all methods. We use this method to
sample random light curtains for all experiments in this paper.

B. Dynamic programming for computing detection probability

A detailed alogrithm of our dynamic programming approach
is given in Algorithm 2. To compute the quantity P (D),
we first decompose the overall problem into smaller sub-
problems by defining the sub-curtain detection probability

Pdet(Xt�1,Xt) = P (
WT

t0=t Dt | Xt�1,Xt). This is the
probability that a random curtain starting on the extended
node (Xt�1,Xt) and ending on the last camera ray, detects
the object O between rays Rt and RT . Note that the overall
detection probability can be written in terms of the sub-
curtain detection probabilities of the second ray as P (D) =P

S2
P (X1,X2) ·Pdet(X1,X2). Then we iterate over camera

rays from RT to R2. The node detection probabilities on the
last ray will simply be either 1 or 0, based on whether the
object is detected at the node or not. After having computed
node detection probabilities for all rays between t+1 and T ,
the probabilities for nodes at ray t can be computed using a
recursive formula. Finally, after obtaining the probabilities for
nodes on the initial rays, the overall detection probabilities can
be computed as described previously.

Algorithm 2: Dynamic programming to compute de-
tection probabilities G
/* Inputs */
G extended constraint graph
P (Xt+1 | Xt�1,Xt) transition prob. distribution
P ((X1,X2)) initial probability distribution
{O1, . . . , OT } ground truth object locations
⌧ detection intensity threshold

St the set of nodes on the t-th camera ray in the
constraint graph.

/* Detection at each location */
forall Xt 2 St, 1  t  T do

It(Xt | Ot) intensity using rendering
Dt(Xt | Ot) [It(Xt | Ot) > ⌧]

/* Initializing last ray */
for (XT�1,XT) 2 ST do

Pdet(XT�1,XT) Dt(XT | OT)

/* Dynamic programming loop */
for t = T � 1 to 2 do

for (XT�1,XT) 2 St do
if Dt(Xt, Ot) = 1 then

Pdet(XT�1,XT) 1

else
Pdet(XT�1,XT) P

XT+1
Pdet(XT ,XT+1) · P (Xt+1 |

Xt�1,Xt)

/* Initial ray */
P (D) 0
for (X1,X2) do

P (D) P (D) + P (X1,X2)·
Pdet(X1,X2)

return P (D)

C. Computational complexity of the extended constraint graph

In this section, we discuss the computational complexity
associated with the extended constraint graph. Let K be the
number of discretized control points per camera ray in the
constraint graph, and let T be the number of camera rays.

Constraint graph size: in the original constraint graph G
of Ancha et al. [1], since a node Nt = Xt contains only one
control point, there can be O(K) nodes per camera ray and
O(K2) edges between consecutive camera rays. This means
that there are O(TK) nodes and O(TK2) edges in the graph.

However, in the extended constraint graph G, each node
Nt = (Xt�1,Xt) contains a pair of control points. Hence,
there can be up to O(K2) nodes per camera ray and O(K4)

edges between consecutive camera rays! This implies that the
total nodes and edges in the graph can be up to O(TK2) and
O(TK4) respectively.

Dynamic programming: dynamic programming involves
visiting each node and each edge in the graph once. Therefore,
the worst-case computation time of dynamic programming in
the extended constraint graph, namely O(TK4), might seem
prohibitively large at first. However, the additional acceleration
constraints in G can significantly limit the increase in the
number of nodes and edges. Additionally, we perform graph
pruning as a post-processing step, to remove all nodes in the
graph that do not have any edges. Since the topology of the
constraint graph is fixed, the graph creation and pruning steps
can be done offline and only once. These optimizations enable
our dynamic programming procedure to be very efficient, as
shown in Sec. VII-A. That being said, any slow down in
dynamic programming is generally acceptable because it is
only used for offline probabilistic analysis.

Random curtain generation: random curtains are placed
by our online method. Fortunately, generating random curtains
from the constraint graph is very fast. It involves a single
forward pass (random walk) through the graph, visiting exactly
one node per ray. It also involves parsing each visited node’s
transition probability distribution vector, whose length is equal
to the number of edges of that node. Since both G and G can
have at most K edges per node, the runtime of generating a
random curtain is O(TK) (for both G and G). In practice, a
large number of random curtains can be precomputed offline.

D. Network architectures and training details

In this section, we describe in detail the network architec-
tures used by our main method, as well as various baseline
models.

1) 2D-CNN: The 2D-CNN architecture we use to fore-
cast safety envelopes is shown in Fig. 8. It takes as input
the previous k light curtain outputs. These consists of the
intensities of the light curtain per camera ray I1:T , as well
as the control points of the curtain that was placed i.e. X1:T .
Each light curtain output (X1:T , I1:T) is converted into a
polar occupancy map. A polar occupancy map is a T ⇥ L

image, where the t-th column of the image corresponds to the
camera ray Rt. Each ray is binned into L uniformly spaced
locations; although L could be set to the number of control
points per camera ray in the light curtain constraint graph, it
is not required. Each column of the occupancy map has at-
most one non-zero cell value. Given Xt, It, the cell on the
t-th column that lies closest to Xt is assigned the value It.
We generate k such top-down polar occupancy maps encoding
intensities. We generate k more such polar occupancy maps,
but just assigning binary values to encode the control points
of the light curtain. Finally, another polar occupancy map is
generated using the forecast of the safety envelope from the
handcrafted baseline policy. The 2k+1 maps are fed as input
to the 2D-CNN. We use k = 5 in all our experiments. The
input is transformed through a sequence of 2D convolutions;
the convolutional layers are arranged in a manner similar to

the the U-Net [23] architecture. This involves skip connections
between downsampled and upsampled layers with the same
spatial size. The output of the U-Net is a 2D image. The U-
Net is a fully convolutional architecture, and the spatial size
of the output is equal to the spatial size of the input. Column-
wise soft-max is then applied to transform the output into
T categorical probability distributions, one per column. We
sample a cell from the t-th distribution, and the location of
that cell in the top-down view is interpreted as the t-th control
point. This produces a forecasted safety envelope.

2) 1D-CNN: We use a 1D-CNN as a baseline network
architecture. The 1D-CNN takes as input the previous k light
curtain placements X1:T , and treats it as a 3-channel 1-
D image (the three channels being the x-coordinate, the z-
coordinate, and the range

p
x2 + z2). It also takes the previous

k intensity outputs I1:T , and treats them as 1-dimensional
vectors. It also takes as input the forecasted safety envelope
from the hand-crafted baseline. The overall input to the 1D-
CNN is a 4k + 1 channel 1D-image. It applies a series of
1D fully-convolutional operations, with ReLU activations. The
output is a 1-D vector of length T . These are treated as ranges
on each light curtain camera ray, and are converted to the
control points X1:T of the forecasted safety envelope.

3) 1D-GNN: We use a graph neural network as a baseline
to perform safety envelope forecasting. The GNN takes as
input the output of the previous two light curtain placements.
The GNN contains 2T nodes, T nodes corresponding to
each curtain. The graph contains two types of edges: vertical
edges between corresponding nodes of the two curtains (T in
number), and horizontal edges between nodes corresponding
to adjacent rays of the same curtain (2T � 1 in number).
Each node gets exactly one feature: the intensity value of its
corresponding curtain and camera ray. Each horizontal and
vertical edge gets 3 input features: the differences in the
x, z,
p
x2 + z2 coordinates of the control points of the rays

corresponding to the nodes the edge is connected to. Then,
a series of graph convolutions are applied. The features after
the final graph convolution, on the nodes corresponding to the
most recent light curtain placement are treated as range values
on each camera ray Rt. The t-th range value is converted to a
control point Xt for camera ray Rt, and the GNN generates
a forecast X1:T of the safety envelope.

We find that providing the output of the hand-crafted
baseline policy as input to the neural networks improves
performance (compare the last two rows of Table I). We
attribute this improvement to two reasons:

1) It helps avoid local minima during training: when
training the neural networks without the handcrafted
input, we observe that the networks quickly settle into
local minima where the loss is unable to decrease
significantly. This suggests that the input helps with
training.

2) It provides useful information to the network: To de-
termine if it is also useful after training is complete,
we replace the handcrafted input with a constant value
and find that this significantly deteriorates performances.

This indicates that the 2D CNN continues to rely on the
handcrafted inputs at test time.

E. Parallelized pipelining and runtime analysis

In this section, we describe the runtime of our approach.
Our overall pipeline has three components: (1) forecasting the
safety envelope, (2) imaging the forecasted and random light
curtains, and (3) processing the light curtain images. Since
these processes can be run independently, we implement them
as parallel threads that run simultaneously. This is shown in
Figure 9.

The imaging and processing threads run continuously at all
times. If a forecasted curtain is available to be imaged, it is
given priority and is scheduled for the next round of imaging.
But if there are no forecasted curtain waiting to be imaged,
random curtains are placed and processed. This scheduling
leads to an overall latency of 75ms (13.33 Hz). Due to the
parallelized implementation, we are able to place two random
curtains during each cycle of our pipeline.

Figure 9 (right) shows a breakdown of the timing of the
forecasting method method. It consists of the feed-forward
pass of the 2D CNN, as well as other high-level processing
tasks.

F. Results for the simulated environment without using random

curtains

In this section, we include additional results corresponding
to the “Ours w/o Random curtains” row of Table I. Table III
contains results of other policies (handcrafted baseline, 1D-
CNN baseline, 1D-GNN baseline) and ablation conditions
(Ours w/o Forecasting, Ours w/o Baseline input) when random
curtains are not used. The top half of Table III contains results
without using random curtains. The bottom half contains
results for the same policies using random curtains (this is
essentially a copy of Table I, to aid with comparisions).
We find that the conclusions of Table I still hold when
random curtains are not used: our method still outperforms
the baselines and removing any component of our method (not
forecasting to the next timestep or removing the output of the
hand-crafted policy as input) reduces performance.

G. Hardware specification of light curtains

In this section, we provide some details about the hardware
specification of light curtains, as well as comparing it with the
specifications of a Velodyne HDL-64E LiDAR.

The distance between the camera and the laser (the baseline
of the device) is 20 cm. The maximum angular velocity of the
galvanometer is 2.5 ⇥ 104 rad/sec and the maximum angular
acceleration of the galvanometer is 1.5 ⇥ 107 rad/sec2. The
operating range of the light curtain device is up to 20 meters
(daytime outdoors) and 50 or more meters (indoor or night
time).

The following table compares the light curtain device with
a Velodyne HDL-64E:

The LiDAR is limited to fixed scan patterns. Light curtains
are designed to be programmable as long as the curtain profiles

Fig. 8: The network architecture of the 2D CNN model used for safety envelope forecasting. It takes as input the previous
k light curtain outputs, and converts them into top-down polar occupancy maps. Each column of the image is assigned to a
camera ray, and each row is treated as a binned location. It also takes the prediction of the hand-crafted baseline as additional
input. The input is transformed through a series of 2D convolution layers, arranged in a manner similar to the U-Net [23]
architecture. This involves skip connections between downsampled and upsampled layers with the same spatial size. The output
of the U-Net is a 2D image. This is a fully-convolutional architecture, and the spatial dimensions of the input and output are
equal. Column-wise soft-max is then applied to the output to transform it to a probability distribution per column. A value Xt

is sampled per column to produce the profile of the forecasted safety envelope.

Random
curtain

Huber loss RMSE
Linear

RMSE
Log

RMSE
Log Scale-Inv.

Absolute
Relative Diff.

Squared
Relative Diff.

Thresh
(1.25)

Thresh
(1.252)

Thresh
(1.253)

" " "
Handcrafted baseline 7 0.1989 2.5811 0.2040 0.0904 0.2162 2.0308 0.6321 0.7321 0.7657

1D-CNN 7 0.1522 2.3856 0.2176 0.1076 0.1750 0.9482 0.5842 0.7197 0.7868
1D-GNN 7 0.1584 2.2114 0.1835 0.0839 0.1772 1.1999 0.6546 0.7381 0.7710

Ours w/o Forecasting 7 0.1691 2.6047 0.2288 0.1158 0.1927 1.2555 0.6109 0.7114 0.7654
Ours w/o Baseline input 7 0.1556 2.5987 0.2273 0.1135 0.1797 1.1063 0.6021 0.7094 0.7683

Ours 7 0.1220 2.0332 0.1724 0.0888 0.1411 0.9070 0.6752 0.7450 0.7852
Handcrafted baseline 3 0.1145 1.9279 0.1522 0.0721 0.1345 1.0731 0.6847 0.7765 0.8022
Random curtain only 3 0.1484 2.2708 0.1953 0.0852 0.1698 1.2280 0.6066 0.7392 0.7860

1D-CNN 3 0.0896 1.7124 0.1372 0.0731 0.1101 0.7076 0.7159 0.7900 0.8138
1D-GNN 3 0.1074 1.6763 0.1377 0.0669 0.1256 0.8916 0.7081 0.7827 0.8037

Ours w/o Forecasting 3 0.0960 1.7495 0.1428 0.0741 0.1163 0.6815 0.7010 0.7742 0.8024
Ours w/o Baseline input 3 0.0949 1.8569 0.1600 0.0910 0.1148 0.7315 0.7082 0.7740 0.7967

Ours 3 0.0567 1.4574 0.1146 0.0655 0.0760 0.3662 0.7419 0.8035 0.8211

TABLE III: Performance of safety envelope estimation on the SYNTHIA [34] urban driving dataset under various metrics, with
and without using random curtains. Policies in the top half of the table were trained and evaluated without random curtains,
while policies in the bottom half were trained and evaluated with random curtain placement.

Light curtain Velodyne HDL-64E LiDAR
Horizontal resolution 0.08� 0.08� - 0.35�

Vertical resolution 0.07� 0.4�

Rotation speed 60 Hz 5 Hz – 30 Hz
Cost Less than $1000 Approx. $80, 000

TABLE IV: Performance of safety envelope estimation in a
real-world dataset with moving pedestrians. The environment
consisted of two people walking in both back-and-forth and
sideways motions.

satisfy the velocity and acceleration limits. Note that the
resolution of the light curtain is the same as the 2D camera
used which can be significantly higher than any LIDAR. Our

current prototype uses a camera with a resolution of 640⇥512.

H. Results for the real-world environment under high latency

The results for the real-world enviroment with walking
pedestrians (see Table II of Section VII) were generated
using the parallelized and efficient pipeline described in Ap-
pendix VIII-E. We now present some older results for the same
environment that did not use the efficient implementation.
Random curtains were not imaged and processed in parallel
with the forecasting method. Instead, these operations were
performed sequentially: we alternated between the forecasting
step and placing a single random curtain. This increases the
latency of the pipeline. A comparison between our method and

Fig. 9: Pipeline showing the runtime of the efficient, parallelized implementation of our method. The pipeline contains three
processes running in parallel: (1) the method that forecasts the safety envelope, (2) imaging of the light curtains performed by
the physical light curtain device, and (3) low-level processing of images. Here, “R” or “RC” stands for “random curtain” and
“F” or “FC” stands for “forecasting curtain”. Bottom right: the forecasting method further consists of running the feed-forward
pass of the 2D CNN and high-level processing of the random and forecasting curtains. The overall latency of our pipeline is
75ms (13.33 Hz). We are able to place two light curtains in each cycle of the pipeline.

the handcrafted baseline when both use this slower implemen-
tation is shown in Table V. Our method is able to outperform
the handcrafted baseline under various implementations with
varying latencies.

Huber loss RMSE
Linear

RMSE
Log

RMSE
Log Scale-Inv.

Absolute
Relative Diff.

Squared
Relative Diff.

Thresh
(1.25)

Thresh
(1.252)

Thresh
(1.253)

" " "
Handcrafted baseline 0.07045 0.7501 0.1282 0.0886 0.1070 0.1072 0.8907 0.9975 1.0000

Ours 0.0189 0.3556 0.0667 0.0443 0.0449 0.0271 0.9890 0.9953 0.9976

TABLE V: Performance of safety envelope estimation in the real-world pedestrian environment under a high latency i.e. slower
implementation.

REFERENCES

[1] Siddharth Ancha, Yaadhav Raaj, Peiyun Hu, Srinivasa G.
Narasimhan, and David Held. Active perception us-
ing light curtains for autonomous driving. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, Computer Vision – ECCV 2020, pages
751–766, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-58558-7. URL http://siddancha.github.
io/projects/active-perception-light-curtains/.

[2] Andrea Bajcsy, Somil Bansal, Eli Bronstein, Varun
Tolani, and Claire J Tomlin. An efficient reachability-
based framework for provably safe autonomous navi-
gation in unknown environments. In 2019 IEEE 58th

Conference on Decision and Control (CDC), pages
1758–1765. IEEE, 2019. URL https://ieeexplore.ieee.org/
abstract/document/9030133.

[3] Ruzena Bajcsy. Active perception. Proceedings of the

IEEE, 76(8):966–1005, 1988. URL https://ieeexplore.
ieee.org/abstract/document/5968.

[4] Ruzena Bajcsy, Yiannis Aloimonos, and John K Tsotsos.
Revisiting active perception. Autonomous Robots, 42(2):
177–196, 2018. URL https://link.springer.com/article/10.
1007/s10514-017-9615-3.

[5] Joseph R Bartels, Jian Wang, William Whittaker, Srini-
vasa G Narasimhan, et al. Agile depth sensing us-
ing triangulation light curtains. In Proceedings of the

IEEE/CVF International Conference on Computer Vi-

sion, pages 7900–7908, 2019. URL http://www.cs.cmu.
edu/⇠ILIM/agile depth sensing/html/index.html.

[6] Ricson Cheng, Arpit Agarwal, and Katerina Fragkiadaki.
Reinforcement learning of active vision for manipulat-
ing objects under occlusions. In Conference on Robot

Learning, pages 422–431. PMLR, 2018. URL http:
//proceedings.mlr.press/v87/cheng18a.html.

[7] Cl Connolly. The determination of next best views.
In Proceedings. 1985 IEEE international conference on

robotics and automation, volume 2, pages 432–435.
IEEE, 1985. URL https://ieeexplore.ieee.org/abstract/
document/1087372.

[8] Arun CS Kumar, Suchendra M Bhandarkar, and
Mukta Prasad. Depthnet: A recurrent neural network
architecture for monocular depth prediction. In
Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, pages 283–
291, 2018. URL https://openaccess.thecvf.com/content
cvpr 2018 workshops/papers/w9/Kumar DepthNet A
Recurrent CVPR 2018 paper.pdf.

[9] Jonathan Daudelin and Mark Campbell. An adaptable,
probabilistic, next-best view algorithm for reconstruction
of unknown 3-d objects. IEEE Robotics and Automation

Letters, 2(3):1540–1547, 2017. URL https://scholar.
google.com/scholar?cluster=7456760468603259697&
hl=en&as sdt=5,39&sciodt=0,39.

[10] Joachim Denzler and Christopher M Brown. Infor-
mation theoretic sensor data selection for active object

recognition and state estimation. IEEE Transactions

on pattern analysis and machine intelligence, 24(2):
145–157, 2002. URL https://ieeexplore.ieee.org/abstract/
document/982896.

[11] Andreas Doumanoglou, Rigas Kouskouridas, Sotiris
Malassiotis, and Tae-Kyun Kim. Recovering 6d object
pose and predicting next-best-view in the crowd. In
Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3583–3592, 2016. URL
https://www.cv-foundation.org/openaccess/content
cvpr 2016/html/Doumanoglou Recovering 6D Object
CVPR 2016 paper.html.

[12] David Eigen, Christian Puhrsch, and Rob Fergus.
Depth map prediction from a single image using
a multi-scale deep network. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Pro-

cessing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.cc/paper/2014/
file/7bccfde7714a1ebadf06c5f4cea752c1-Paper.pdf.

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are
we ready for autonomous driving? the kitti vision bench-
mark suite. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2012. URL http://www.
cvlibs.net/datasets/kitti/.

[14] Peter J Huber. Robust estimation of a location parameter.
In Breakthroughs in statistics, pages 492–518. Springer,
1992. URL https://www.jstor.org/stable/2238020?seq=1.

[15] Stefan Isler, Reza Sabzevari, Jeffrey Delmerico, and
Davide Scaramuzza. An information gain formulation
for active volumetric 3d reconstruction. In 2016 IEEE

International Conference on Robotics and Automation

(ICRA), pages 3477–3484. IEEE, 2016. URL https:
//ieeexplore.ieee.org/abstract/document/7487527.

[16] Simon Kriegel, Christian Rink, Tim Bodenmüller, and
Michael Suppa. Efficient next-best-scan planning for
autonomous 3d surface reconstruction of unknown ob-
jects. Journal of Real-Time Image Processing, 10(4):
611–631, 2015. URL https://link.springer.com/article/10.
1007/s11554-013-0386-6.

[17] Chao Liu, Jinwei Gu, Kihwan Kim, Srinivasa G
Narasimhan, and Jan Kautz. Neural rgb (r) d
sensing: Depth and uncertainty from a video
camera. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern

Recognition, pages 10986–10995, 2019. URL https:
//openaccess.thecvf.com/content CVPR 2019/papers/
Liu Neural RGBrD Sensing Depth and Uncertainty
From a Video Camera CVPR 2019 paper.pdf.

[18] Larry Matthies, Richard Szeliski, and Takeo Kanade.
Depth maps from image sequences1. URL
https://www.ri.cmu.edu/pub files/pub2/matthies l
1988 1/matthies l 1988 1.pdf.

[19] Vaishakh Patil, Wouter Van Gansbeke, Dengxin Dai, and
Luc Van Gool. Dont forget the past: Recurrent depth
estimation from monocular video. IEEE Robotics and

Automation Letters, 5(4):6813–6820, 2020. URL https:
//arxiv.org/pdf/2001.02613.pdf.

[20] Charles Richter and Nicholas Roy. Safe visual navigation
via deep learning and novelty detection. 2017. URL
https://dspace.mit.edu/handle/1721.1/115978.

[21] Charles Richter, John Ware, and Nicholas Roy. High-
speed autonomous navigation of unknown environments
using learned probabilities of collision. In 2014 IEEE

International Conference on Robotics and Automation

(ICRA), pages 6114–6121. IEEE, 2014. URL https:
//ieeexplore.ieee.org/abstract/document/6907760.

[22] Charles Richter, William Vega-Brown, and Nicholas Roy.
Bayesian learning for safe high-speed navigation in
unknown environments. In Robotics Research, pages
325–341. Springer, 2018. URL https://link.springer.com/
chapter/10.1007/978-3-319-60916-4 19.

[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical im-

age computing and computer-assisted intervention, pages
234–241. Springer, 2015. URL https://link.springer.com/
chapter/10.1007/978-3-319-24574-4 28.

[24] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the four-

teenth international conference on artificial intelligence

and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011. URL http://proceedings.
mlr.press/v15/ross11a.

[25] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus.
Planning and decision-making for autonomous vehicles.
Annual Review of Control, Robotics, and Autonomous

Systems, 2018. URL https://www.annualreviews.org/doi/
abs/10.1146/annurev-control-060117-105157.

[26] William R Scott, Gerhard Roth, and Jean-François
Rivest. View planning for automated three-dimensional
object reconstruction and inspection. ACM Computing

Surveys (CSUR), 35(1):64–96, 2003. URL https://dl.acm.
org/doi/abs/10.1145/641865.641868.

[27] J Irving Vasquez-Gomez, L Enrique Sucar, Rafael
Murrieta-Cid, and Efrain Lopez-Damian. Volumetric
next-best-view planning for 3d object reconstruction with
positioning error. International Journal of Advanced

Robotic Systems, 11(10):159, 2014. URL https://journals.
sagepub.com/doi/full/10.5772/58759.

[28] Jian Wang, Joseph Bartels, William Whittaker, Aswin C
Sankaranarayanan, and Srinivasa G Narasimhan. Pro-
grammable triangulation light curtains. In Proceedings of

the European Conference on Computer Vision (ECCV),
pages 19–34, 2018. URL http://www.cs.cmu.edu/⇠ILIM/
programmable light curtain/html/index.html.

[29] Rui Wang, Stephen M Pizer, and Jan-Michael Frahm.
Recurrent neural network for (un-) supervised learning
of monocular video visual odometry and depth. In
Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 5555–5564, 2019.

URL https://openaccess.thecvf.com/content CVPR
2019/papers/Wang Recurrent Neural Network for
Un-Supervised Learning of Monocular Video Visual
CVPR 2019 paper.pdf.

[30] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu,
Linguang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1912–1920,
2015. URL https://www.cv-foundation.org/openaccess/
content cvpr 2015/html/Wu 3D ShapeNets A 2015
CVPR paper.html.

[31] Huangying Zhan, Ravi Garg, Chamara Saroj
Weerasekera, Kejie Li, Harsh Agarwal, and Ian Reid.
Unsupervised learning of monocular depth estimation
and visual odometry with deep feature reconstruction.
In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 340–349, 2018.
URL https://openaccess.thecvf.com/content cvpr 2018/
papers/Zhan Unsupervised Learning of CVPR 2018
paper.pdf.

[32] Haokui Zhang, Chunhua Shen, Ying Li, Yuanzhouhan
Cao, Yu Liu, and Youliang Yan. Exploiting temporal
consistency for real-time video depth estimation. In
Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 1725–1734, 2019. URL
https://openaccess.thecvf.com/content ICCV 2019/
papers/Zhang Exploiting Temporal Consistency for
Real-Time Video Depth Estimation ICCV 2019
paper.pdf.

[33] ChaoQiang Zhao, QiYu Sun, ChongZhen Zhang, Yang
Tang, and Feng Qian. Monocular depth estimation
based on deep learning: An overview. Science China

Technological Sciences, pages 1–16, 2020. URL https:
//link.springer.com/article/10.1007/s11431-020-1582-8.

[34] Javad Zolfaghari Bengar, Abel Gonzalez-Garcia, Gabriel
Villalonga, Bogdan Raducanu, Hamed H Aghdam,
Mikhail Mozerov, Antonio M Lopez, and Joost van de
Weijer. Temporal coherence for active learning in videos.
arXiv preprint arXiv:1908.11757, 2019. URL https:
//synthia-dataset.net/.

