
Appendix
Active Velocity Estimation using Light Curtains

via Self-Supervised Multi-Armed Bandits

APPENDIX A
DERIVATION OF RECURSIVE BAYESIAN ESTIMATION

The goal is to infer at each timestep t a distribution bel(xt) =
P (xt | u1:t, z1:t) over the current state xt from the sequence of
sensor observations z1:t and the known sequence of actions u1:t.
bel(xt) is computed using recursive Bayesian estimation [65].
Combining the definition of bel(xt) and the Markov property
of the dynamic Bayes network, we can derive the following
recursive relationship [65]:

bel(xt) = P (xt | u1:t, z1:t)

∝ P (xt, zt | u1:t, z1:t−1)

= P (zt | xt, u1:t, z1:t−1) P (xt | u1:t, z1:t−1)

= P (zt | xt, ut) P (xt | u1:t−1, z1:t−1)

= P (zt | xt, ut)

∫
xt−1

P (xt−1, xt | u1:t−1, z1:t−1) dxt−1

= P (zt | xt, ut)

∫
xt−1

P (xt−1 | u1:t−1, z1:t−1)

· P (xt | xt−1, u1:t−1, z1:t−1) dxt−1

= P (zt | xt, ut)

∫
xt−1

P (xt−1 | u1:t−1, z1:t−1)︸ ︷︷ ︸
bel(xt−1)

· P (xt | xt−1) dxt−1

= P (zt | xt, ut)

∫
xt−1

bel(xt−1) P (xt | xt−1) dxt−1

= P (zt | xt, ut) bel(xt) (Measurement update), where

bel(xt) =

∫
xt−1

bel(xt−1) P (xt | xt−1) dxt−1 (Motion update)

Based on the above recursive equations, recursive Bayesian
estimation alternates between the following two steps:

1) Motion update step: This step accounts for the dynamics
of the environment. It first computes an intermediate
quantity defined above:
bel(xt) =

∫
xt−1

bel(xt−1) P (xt | xt−1) dxt−1. This is
the result of “applying” a known or assumed motion
model P (xt | xt−1) to the previous belief bel(xt−1).
In dynamic occupancy grids, this step accounts for the
motion of scene points based on their current 2D velocities.
The occupancies and velocities of the next timestep are
computed based on the occupancies and velocities in the
previous timestep. We use a constant velocity motion
model with Gaussian noise in both velocity and position.
When the motion model is applied to Fig. 7a, it is updated

to Fig. 7b (illustration only). This correction step usually
increases the uncertainty in occupancies and velocities.

2) Measurement update step: This step incorporates mea-
surements from a sensor. It updates the prior belief
bel(xt) to bel(xt) ∝ P (zt | xt, ut) bel(xt) by weighting
bel(xt) by the likelihood of the observed measurements
P (zt | xt, ut). This step usually reduces uncertainty
in the state. In dynamic occupancy grids, occupancies
are updated using the measurements from the light
curtain. Since light curtains (or any depth sensor) only
measure the locations of objects, this step does not update
velocities. The velocity estimates are automatically refined
in subsequent motion update steps. The measurement
update reduced the probability of one of the positions of
an object in Fig. 7b to Fig. 7c (illustration only).

APPENDIX B
DYNAMIC OCCUPANCY GRIDS

The dynamic occupancy grid, like conventional occupancy
grids [29, 65], is an instance of Bayes filters. Occupancy
grids [29, 65] are a standard tool in robotics for mapping
the location of static objects in the environment. 2D occupancy
grids that map objects from the top-down view are commonly
used for mapping and SLAM in robot navigation. Each cell in
the grid contains an occupancy probability p ∈ [0, 1], denoting
the probability of the cell being occupied by an object. Dynamic
occupancy grids [23] are an extension of classical occupancy
grids (see Figure 7a). Each cell in the grid contains both (1)
the occupany probability p ∈ [0, 1], as well as (2) a probability
distribution over 2D velocities. The velocity distribution is
represented by a set of weighted particles, where each particles
stores a single 2D velocity. The set of weighted particles
approximates the true velocity distribution.

A. Mathematical framework

Our method is built upon dynamic occupancy grids intro-
duced by Danescu. et. al. [23]. The authors describe particles as
both representing a velocity distribution (i.e. weighted velocity
hypotheses), as well as being “physical building blocks of
the world”. The former interpretation suggests that particles
together represent the probability distribution of the velocity of
a single physical scene point, whereas the latter suggests that
each particle corresponds to its own scene point. Furthermore,
the particles not only represent velocities, but their count
represents the probability of occupancy. While the method
is shown to be very promising, the precise role of particles and
what they represent remains unclear. In this work, we re-derive
dynamic occupancy grids using a more rigorous mathematical

(a) Dynamic occupancy grid before the motion update step.

(b) After the motion update step. (c) After the measurement update step.

Figure 7: Dynamic occupancy grid. Grid structure: The 2D grid represents the top-down view and is made up of cells.
Like conventional static occupancy grids [29, 65], each cell contains an occupancy probability p ∈ [0, 1]. Dark indicates low
occupancy probability and bright indicates high occupancy probability. In addition, each cell also contains a set of weighted
particles where each particles stores a single 2D velocity. The set of particles together represents a probability distribution of
that cell’s velocity. Grid updates: The grid is a Bayes filter [65] that consists of two steps: the motion update step and the
measurement update step. (a) The grid before performing any update. (b) Motion update step: the occupancies and velocities of
the next timestep are computed based on the grid in the previous timestep, increasing uncertainty. (c) Measurement update step:
the occupancies are updated using the measurements from the light curtain, decreasing uncertainty. This will refine the velocity
estimates.

analysis. We explicitly state the assumptions made and provide
a precise interpretation of particles. Our framework can be
derived from three reasonably mild assumptions:

Assumption 1: There are no collisions

Each cell can be occupied by at most one physical scene
point with a single velocity. Cells are sufficiently small
that multiple objects with different velocities cannot
exist (“collide”) within a cell.

This assumption is required for a single velocity of a
cell to be well-defined. Assumption 1 paves the way for a
straightforward interpretation particles: all particles belonging
to a cell represent a probability distribution over the single
velocity of that cell. Assumption 1 allows us to define the state
space of occupancies and velocities.

Representing the state space: Each cell is indexed by
i ∈ I from an index set I of all cell in the grid. At timestep
t, the state of the i-th cell is denoted by xi

t = (oit, v
i
t). It

contains two variables. The first is a binary occupancy variable

oit ∈ {0, 1} which denotes whether the cell is occupied or not.
The second is a 2D velocity variable vit ∈ R2 representing
the continuous velocity of the cell (if it is occupied) from the
top-down view. The overall state of the dynamic occupancy
grid xt is a concantenation of the states of all cells in the grid,
i.e. xt = {xi

t = (oit, v
i
t) | i ∈ I}. Note that the variable vit is

“conditional”: it is only defined when the cell is occpied i.e.
oit = 1.

Assumption 2: Constant velocity motion model

Each scene point moves with a constant velocity, with
added Gaussian noise.

Any motion can be approximated by a constant velocity
motion model as long as the time interval is sufficiently small.
Therefore, this assumption is reasonable in our setting since
light curtains operate at very high speeds (45-60 Hz). Note that
although we use the constant velocity motion model in this
work following [23], the dynamic occupancy grid framework
can still be used by swapping it with any other motion model

of choice.
Let ϵit ∼ N (0, Rϵ) and δit ∼ N (0, Rδ) be the Gaussian

noise in velocity and position respectively for the i-th cell in
the grid at time t. And let posi denote the 2D location of the
center of the i-th cell. The constant velocity motion model can
be expressed mathematically as

ojt+1, v
j
t+1 =

1, vit + ϵit if ∃i ∈ I such that oit = 1 and

posj ≈ posi + vit ∆t+ δit
0 otherwise

(3)

In other words, a cell j will be occupied in the next timestep
if and only if there exists another cell i in the previous timestep
which moves to j under the constant velocity motion model.
In that case, the velocity of cell j will be equal to that of cell i
modulo the Gaussian noise. The equality is approximate taking
into account the finite size of the cell.

Representing the belief distribution: A dynamic occupancy
grid represent the current belief over velocities and occupancies
of the environment. It is a probability distribution over states xt

described above. The state space is extremely large. Dynamic
occupancy grids represent the belief compactly by making the
following assumption:

Assumption 3: Cells are mutually independent

The probability distributions of all cells are mutually
independent. This is a standard assumption made
for occupancy grids for computational tractability.

Each cell contains two distributions:
• Occupancy distribution (ωi

t): oit is a Bernoulli random
variable over {0, 1} with probability ωi

t ∈ [0, 1].
• Velocity distribution (V i

t): vit is a random variable over
R2. It is represented by a set of M weighted particles
V i
t = {(vi,mt , pi,mt) | 1 ≤ m ≤ M}. The m-th particle

has a velocity vi,mt and weight pi,mt that add up to 1
i.e.

∑M
m=1 p

i,m
t = 1. The larger the number of particles

used, the better is the particle approximation to the true
continuous velocity distribution.

The velocity distribution acts like a “conditional” distribution.
The probability that cell i is occupied with velocity vi,mt is
the product ωi

t pi,mt of the probability of being occupied (ωi
t)

and the probability of having the velocity vi,mt given that it is
occupied (pi,mt). The probability of being unoccupied is simply
1− ωi

t. Since cells are assumed to be mutually independent,
the probability of the entire grid is the product of probabilities
of individual cells in the grid.

B. Motion update step

We will now derive the motion update equations of the
dynamic probability grid. These equations govern how particles
will move across the grid and be reweighted. Consider a
simplified grid shown in Fig. 8a. Assume that there are
only three cells in the grid, and only cells 1 and 2 are

occupied at time t. The occupancy and velocity distributions
are illustrated in the figure, and particles (v1,m1

t , p1,m1

t) from
cell 1 and (v2,m2

t , p2,m2

t) from cells 2 move to cell 3 in the
next timestep t+1 (assuming that noise has been incorporated
in v1,m1

t , v2,m2

t). What should be the occupancy and velocity
distribution of cell 3?

Let E1 be the event that the particle from cell 1 enters
cell 3. Similarly, let E2 be the event that the particle from
cell 2 enters cell 3. We have that P (E1) = ω1

t p1,m1

t and
P (E2) = ω2

t p2,m2

t . Cell 3 will be occupied when either
E1 or E2 happens (from Eqn. 3). Its occupancy probability
after the motion update is ω3

t+1 = P (E1 ∪ E2). Now, from
assumption 1 (the no collision assumption), objects of different
velocities cannot occupy the same cell. Therefore events E1

and E2 must be disjoint. From the law of total probability, if
E1 and E2 are disjoint, then P (E1 ∪ E2) = P (E1) + P (E2).
Therefore, the occupancy probability of cell 3 after the motion
update ω3

t+1 = ω1
t p1,m1

t + ω2
t p2,m2

t . The conditional velocity
distribution of cell 3 will comprise of v1,m1

t and v2,m2

t , with
weights proportional to P (E1) and P (E2) respectively. This
leads us to the general motion update of dynamic occupancy
grids:

Motion update step for dynamic occupancy grids (4)

ωj
t+1 =

∑
i∈I

ωi
t

Mi∑
m=1

pi,mt I
[
posj ≈ posi + vi,mt ∆t+ δi,mt

]
V

j

t+1 =
{(

vi,mt + ϵi,mt ,
ωi
t pi,mt

ωj
t+1

) ∣∣∣ i,m : posj ≈ posi + vi,mt ∆t+ δi,mt

}
Note that the above derivation does not require assumption 3;
the law of total probability applies even when the distributions
of incoming cells are not independent! Therefore, the motion
update is exact even if we treat ωi

t and V i
t as marginal

distributions of potentially correlated cells. Assumption 3
is however required for the measurement update step (see
App. B-C).

Figure 8: Applying the motion model to update occupancies and
velocities of cells in the motion update step. ω’s are occupancy
probabilities of cells, v’s and p’s are velocities and weights of
the individual particles respectively.

When adding the ωi
t pi,mt terms from incoming particles

to compute ωj
t+1, the sum should not exceed 1 under the no

collision assumption (assumption 1). However, in practice, this
may be violated. In such cases, we truncate the occupancy
probability to 1 following [23]. However, this happens rarely;
we needed to perform truncation only 0.35% times on average.

C. Measurement update step

Sensors such as light curtains and LiDARs provide depth
information, from which the current occupancy of cells can
be inferred. We use a post-processing algorithm described in
[42] to process sensor data and output a detection variable
zit ∈ {OCCUPIED,FREE,UNKNOWN} for each cell i in the
grid. zit indicates the presence, absence or lack of knowledge
about objects inside cell i.

For LiDAR scans, Hu et al. [42] marks each cell that contains
LiDAR points as OCCUPIED. Then, it uses the fact that if
a 3D point was detected, light must have traveled between
the sensor and the detected point in a straight line without
obstruction. Therefore, rays are cast starting from the sensor
to the OCCUPIED cells using an efficient voxel traversal
algorithm [3]. Cells lying along these rays are marked FREE.
Any cells that remain unclassified are marked as UNKNOWN.
This method exploits visibility constraints of light to extract
the maximum possible information from a 3D scan. We use the
same processing method customized for light curtains. When
a light curtain is placed on a set of cells in the grid, the cells
are classified as OCCUPIED or FREE based on whether points
were detected inside the cell. Raycasting to occupied cells is
also performed to discover additional FREE cells. Figure 2b
visualizes an example of visibility classification. Cells detected
as OCCUPIED are shown in red. Cells shown in blue are
inferred as FREE because they either lie undetected on the
curtain or lie on rays cast to red cells. UNKNOWN cells are
shown in gray.

The measurement update step takes the visibility classifica-
tion as input. Our observation model treats this classification
as a noisy observation of true occupancy. We do not update
the occupancy of UNKNOWN cells. For known cells, we assume
a false positive rate αfp ∈ [0, 1] and a false negative rate
αfn ∈ [0, 1]. The observation model is:

P (zit = OCCUPIED | oit = 1) = 1− αfn

P (zit = FREE | oit = 1) = αfn

P (zit = OCCUPIED | oit = 0) = αfp

P (zit = FREE | oit = 0) = 1− αfp

We first use the assumption that all cells are mutually in-
dependent (assumption 3) to write the belief of the overall
grid bel(xt) =

∏
i∈I bel(xi

t) as a product of belief distribu-
tions of each cell in the grid. Since the likelihood function
P (zt | xt) =

∏
i∈I P (zit | oit) is also independent for each cell,

the updated posterior belief bel(xt | zt) ∝ bel(xt) P (zt | xt)
can be computed independently for each cell. Given the prior
occupancy distribution ωi

t and an observation zit for cell i, its

occupancy distribution after the measurement update can be
computed using the Bayes rule:

Measurement update step for dynamic occupancy grids (5)

ωi
t =

ωi
t P (zit | oit = 1)

ωi
t P (zit | oit = 1) + (1− ωi

t) P (zit | oit = 0)

Depth sensors only provide information about the occupancy of
cells; they do not directly measure object velocities. Velocities
are inferred indirectly by a combination of measurement- and
motion- update steps. The measurement update incorporates
information about occupancy and the motion update infers
velocities that are consistent with occupancy across timesteps
in a principled probabilistic manner. Therefore, our method
estimates velocities from depth measurements without requiring
explicit data association across frames!

APPENDIX C
COMPUTING DEPTH PROBABILITIES USING RAYMARCHING

The depth probability of a cell in the grid is the probability
that the depth of the scene along the cell’s direction is the
cell’s location. In other words, it is the probability that a
visible surface exists in the cell i.e. the cell is occupied and all
other occluding cells are empty. Once we compute the depth
probability of each cell in the grid, we can place a curtain that
lies on the cells with the highest depth probability.

How do we compute the depth probability in a probabilistic
occupancy grid? We borrow the idea of “ray marching” from
the literature on volumetric rendering [66, 53]. In order to
reconstruct the implicit depth surface from a probabilistic
volume, ray marching travels along a ray originating from the
sensor and computes the probability of visibility and occlusion
at each point. Tulsiani et al. [66] performs this for discretized
3D grids (similar to our case) whereas NeRFs [53] perform this
in a continuous space using neural radiance fields. Consider an
example of raymarching in Fig. 2c. Let the sequence of cells on
a ray be indexed as 1, 2, . . . , n, . . . N . Recall from App. B that
ωi
t is the occupancy probability of the i-th cell at timestep t. The

depth probability of the n-th cell PD
t (n) = ωn

t

∏n−1
i=1 (1−ωi

t)
is product of the probabilities that the n-th cell is occupied
(ωn

t) and the probabilities that each i-th cell on the ray before
the n-th cell is unoccupied (1−ωi

t) so that light can reach the
n-th cell unoccluded. Let us define the “visibility” probability
PV
t (n) =

∏n
i=1(1− ωi

t) that all cells are visible upto the n-th
cell. Then, we have the following recursive equations:

PV
t (i) = PV

t (i− 1) (1− ωi
t)

PD
t (i) = PV

t (i− 1) ωi
t

These recursive equations can be used to compute the depth
probability of each cell along a ray efficiently in time O(N)
linear in the number of cells on that ray. This strategy is
implemented as follows. For each camera ray, we perform the
ray-marching procedure and compute the depth probability of
each cell along that ray. Then, for each camera ray, we place
the curtain at the cell with the maximum depth probability.

APPENDIX D
MAXIMIZING INFORMATION GAIN

Consider the dynamic Bayes network shown in Fig. 1b. Given
a forecasted prior belief P (xt) = bel(xt), the information
gain framework prescribes that the action ut should be taken
that maximizes the information gain IG(xt, zt | ut) between
the state xt and the observations zt when taking an action
ut. Information gain is a well-studied quantity in information
theory and is usually defined as:

IG(xt, zt | ut) = H(P (xt))︸ ︷︷ ︸
entropy of xt

− Ezt|ut

[
H(P (xt | zt, ut))

]︸ ︷︷ ︸
conditional entropy of xt | zt under ut

(6)

The information gain is the expected reduction in entropy
(i.e. uncertainty) in xt before and after taking the action ut.
Ancha et al. [4] showed that under certain assumptions, the
information gain of conventional occupancy grids on placing
light curtains is equal to the sum of binary entropies of the
occupancy probabilities of the cells that the curtain lies on.

While information gain for conventional occupancy grids is
straightforward to derive, it is not so for the case of dynamic
occupancy grids. This is because the underlying state space
of dynamic occupancy grids is a ‘mixture’ of discrete and
continuous spaces. Consider the state xi

t of the i-th cell in the
grid. The space of the state xi

t is:

xi
t ∈ {unoccupied}︸ ︷︷ ︸

discrete space

∪ {occupied with vit | vit ∈ R2}︸ ︷︷ ︸
continuous space

The cell can either be unoccupied, or be occupied with a
continuous velocity. Unfortunately, the entropy of such mixed
discrete-continuous spaces is not well-defined [31]. Therefore
the “2H-estimator” in Eqn. 6 (named so because it contains
two entropy terms) cannot be used to calculate information
gain since the individual terms on the right hand side are not
well-defined.

Fortunately, information gain (unlike entropy) is well-
defined for most distributions, including discrete-continuous
mixtures [31]. This is possible by using a more general
definition of information gain given by the “Radon–Nikodym”
derivative [31]:

IG(xt, zt | ut) =

∫
xt,zt

log
dPx,z

dPxPz︸ ︷︷ ︸
Radon–Nikodym derivative

dPx,z (7)

The Radon–Nikodym is well-defined for discrete-continuous
mixtures [31]. When the individual entropy terms of Eqn. 6
(the 2H-estimator) are well-defined, the more general definition
of Eqn. 7 reduces to Eqn. 6. In other words, the two definitions
are consistent.

We will now derive the information gain of dynamic
occupancy grids using the more general Radon–Nikodym
definition. Here, we derive the information gain of a single i-th
cell. Let ω be the occupancy probability of the cell. Let the
continuous velocity distribution of the cell be denoted by P (v).
Assume that we place a curtain on this cell, and we obtain an
observation zit ∈ {0, 1} to be a noisy measurement of the cell’s

occupancy. This is assuming that we are using a depth sensor
that can only partially observe occupancy but cannot directly
observe velocities. Let αfp and αfn be the false-positive and
false-negative rates of the sensor respectively. Then,

IG(xi
t | zit)

=

∫
x,z

dPx,z log
dPx,z

dPxPz
(Radon-Nikodym formulation)

= (1− ω)(1− αfp) log
(1− ω)(1− αfp)

(1− ω)P (zit = 0)︸ ︷︷ ︸
unoccupied and undetected

+

(1− ω) αfp log
(1− ω) αfp

(1− ω)P (zit = 1)︸ ︷︷ ︸
unoccupied and detected

+

∫
v

ω P (v)dv (1− αfn) log
ω P (v)dv (1− αfn)

ω P (v)dv P (zit = 1)︸ ︷︷ ︸
velocity v and detected

+

∫
v

ω P (v)dv αfn log
ω P (v)dv αfn

ω P (v)dv P (zit = 0)︸ ︷︷ ︸
velocity v and undetected

= (1− ω)(1− αfp) log
(1− αfp)

P (zit = 0)
+ (1− ω) αfp log

αfp

P (zit = 1)

+ ω (1− αfn) log
(1− αfn)

P (zit = 1)
+ ω αfn log

αfn

P (zit = 0)

= −
[
(1− ω)(1− αfp) + ω αfn

]
logP (zit = 0)

−
[
(1− ω) αfp + ω(1− αfn)

]
logP (zit = 1)

− ω H(αfn)− (1− ω) H(αfp)

= −P (zit = 0) logP (zit = 0)− P (zit = 1) logP (zit = 1)

− ω H(αfn)− (1− ω) H(αfp)

= H(z)− ω H(αfn)− (1− ω) H(αfp)

= H(ω) (assuming that αfp = αfn = 0)

Assumption 1: We assume that the sensor is accurate (i.e. the
false positive rate αfp and the false negative rate αfn are both
close to zero). Then, the information gain of a single cell due
to placing a light curtain on that cell is equal to its binary
occupancy entropy Hocc(ω) = −ω log2 ω− (1−ω) log2(1−
ω).

Assumption 2: We assume that all cells are independently
distributed. Since the information gain of independently dis-
tributed random variables is the sum of information gain of
individual variables [22], the total information gain is the sum
of binary cross entropies Hocc(ω

i
t) of the cells that the curtain

lies on. This is similar to the information gain in Ancha et al. [4].
However, we have been able to prove this mathematically in the
more complex case of mixed discrete-continuous distributions.

This theoretical result is also intuitive – since the depth sensor
measurements only provide information about occupancy and
not velocity, it is not surprising that the information gain is
equal to the total occupancy uncertainty.

APPENDIX E
ADVANTAGES OF LIGHT CURTAINS OVER CONVENTIONAL

DEPTH SENSORS

LiDARs have long range and high accuracy under strong
ambient light. However, compared to light curtains, they have
poor vertical resolution (≤128 rows), low frame rate (5-20Hz),
and are very expensive (>$20K). Table III compares LiDARs
and light curtains.

LiDAR Light Curtains
Resolution 128 rows 1280 rows

Cost ∼$20,000 ∼$1,000
Frame rate 10-20 Hz 45-60 Hz

Table III: Comparison between a modern Ouster OS1 [43]
LiDAR, and Programmable Light Curtains [9].

Passive RGBD sensors (stereo sensors that do not project
light) have high spatial and temporal resolution and are
inexpensive. However, their accuracy is poor in non-textured
regions due to inaccuracies in stereo feature matching.

Active RGBD sensors (like the Kinect sensor that projects
light) inherit the benefits of stereo sensors but also work in
texture-less regions. However, they have virtually no range
outdoors.

Light curtains combine the best of these sensors. They have
a long range (nearly 35-50m) both outdoors and indoors, high
spatial resolution (1280 rows) and temporal resolution (45-
60 Hz), work for textured and texture-less regions, and are
inexpensive (<1$K). These advantages have been demonstrated
in previous works on programmable light curtains [9, 58].

APPENDIX F
USING AN EXTRA GRID FOR THREAD-SAFETY AND

EFFICIENCY

Our parallelized pipeline contains three threads: (1) light curtain
sensing, (2) Bayes filtering using dynamic occupancy grids,
and (3) computing curtain placements. How many grids are
required to run these threads in parallel, especially threads 2
and 3?

The motion update step (Eqns. 1, 4) moves particles across
the grid according to the motion model. The particles cannot be
moved in place inside the same grid since it may cause the same
particle to be erroneously moved more than once. Therefore, the
motion update step requires two grids: a “source/current” grid
and a “destination/next” grid. Particles from the current grid
are copied, moved and placed in the next grid. After the motion
update is complete, the roles of the current and next grids are
swapped. The next grid is now assigned to be the new “current”
grid since it is now the most up-to-date, incorporating the latest
measurements. In the next motion update step, particles move
from this grid to the older current grid (now taking the role of
the “next” grid).

The curtain computation thread also performs a motion
update when it needs to forecast the current grid to a future
timestep (when the next curtain is expected to be imaged). It

uses the current grid of the Bayes filtering thread as the source,
but requires a third, ”forecasting” grid as a destination grid.

Although three grids are sufficient to implement paralleliza-
tion, the pipeline can be made more efficient. Specifically,
consider the situation where two motion updates take place
simultaneously from “current” to “next” grids in the Bayes
filtering thread and “current” to ”forecasting” grid in the curtain
computation thread. Once the motion update in the Bayes
filtering thread is complete, it cannot immediately perform
the next motion update step. It must wait for the curtain
computation thread to finish forecasting using the “current”
grid before the “current” and “next” grids can be swapped and
the next motion update dirties the “current” grid. If we use an
additional “extra” grid, the Bayes filtering thread can use this
as the destination grid for its next motion update step without
needing to wait on the curtain computation thread to finish the
latter’s forecasting step.

Our parallelized pipeline tightly integrates the three inter-
dependent processes in a closed loop. We use a total of four
grids to simultaneously guarantee the following two properties:
(1) grids in use are never mistakenly overwritten, and (2) no
thread ever needs to wait on another to finish processing.

APPENDIX G
EVALUATION METRICS

As mentioned in Sec. VIII-B, forecasted occupancy [50,
1] simultaneously captures both the accuracy of occupancy
estimates as well as velocity estimates. This metric is especially
pertinent for obstacle avoidance where future occupancy of
obstacles is needed to plan paths that avoid collisions.

We will use the notation for dynamic occupancy grids
introduced in Sec. B-A. The current dynamic occupancy grid
at timestep t is represented by Gt = {ωi

t, V
i
t | i ∈ I}, where

ωi
t is the Bernoulli occupancy probability of the i-th cell, and

V i
t = {(vi,mt , pi,mt) | 1 ≤ m ≤ M} is the set of M weighted

particles that represents the velocity distribution of the i-th
cell.

To evaluate Gt, we first apply the motion update step
(Eqns. 1, 4) to forecast it by a time ∆t and obtain the dynamic
occupancy grid Gt+∆t at time t + ∆t. Then, the forecasted
occupancy probabilities {ωi

t+∆t | i ∈ I} are evaluated against
the ground truth occupancies {oit+∆t | i ∈ I}. We follow
prior works [40, 52, 62] that treat the evaluation of occupancy
as a classification problem and compute binary occupancies
õ i
t+∆t = I(ωi

t+∆t ≥ 0.5) thresholded at 0.5 probability.
We use the following metrics to evaluate the quality of

predicted occupancy. We ignore cells that are occluded (in the
ground truth) since (1) they cannot be observed by optical
sensors, and (2) they are not the closest object to the robot
making them less relevant for obstacle avoidance. Let ILOS be
the subset of cells that are in the sensor’s line-of-sight (LOS).
Note that õ i

t+∆t, o
i
t+∆t ∈ {0, 1}.

1) Classification accuracy: The fraction of cells whose occu-
pancy is correctly predicted.

Accuracy =

∑
i∈ILOS

I{õ i
t+∆t = oit+∆t}

|ILOS|

(a) HSV colorwheel used to visualize velocities. (b) Colorwheel from the top-down view (c) GT velocities of the simulated environment.

Figure 9: (a) The HSV (hue-saturation-value) colorwheel [73] used to visualize 2D velocities and occupancies. Value corresponds
to the occupancy probability. The hue corresponds to the direction of the velocity. Saturation corresponds the magnitude of
velocity. (b) The HSV colorwheel in the top-down view, denoting the direction of velocity. (c) Ground truth velocities and
occupancies in the simulated environment. The grid shows a stationary wall to the left and two objects. The bluish-purple
square is moving upwards in 2D (i.e. farther away from the sensor in 3D) whereas the other objects in white are stationary.

2) Precision: The fraction of cells predicted to be occupied
that were actually occupied.

Precision =

∑
i∈ILOS

I{õ i
t+∆t = 1} I{oit+∆t = 1}∑

i∈ILOS
I{õ i

t+∆t = 1}

3) Recall: The fraction of occupied cells that were also
predicted to be occupied.

Recall =

∑
i∈ILOS

I{õ i
t+∆t = 1} I{oit+∆t = 1}∑

i∈ILOS
I{oit+∆t = 1}

4) F1-Score: A combination (harmonic mean) of precision and
recall that is a commonly used for binary classification [74].
The F1 score is robust to class imbalance; unlike precision
and recall, it cannot be trivially improved by predicting
mostly negative labels and mostly positive labels.

F1-Score =
2 · Precision · Recall
Precision+ Recall

5) IoU: The intersection-over-union between cells that are
occupied (in ground truth) and cells that are predicted to
be occupied.

IoU =

∑
i∈ILOS

I(õ i
t+∆t = 1) I(oit+∆t = 1)∑

i∈ILOS
I(õ i

t+∆t = 1 or oit+∆t = 1)

For all metrics, a higher numerical score is better.

APPENDIX H
VISUALIZING VELOCITIES AND OCCUPANCIES

Fig. 9 shows how we visualize 2D velocities and occupancies
(both ground truth and estimated velocities and occupancies).
The visualization of an example ground truth grid is shown in
Fig. 9c. We use the three-dimensional HSV colorwheel shown
in Fig. 9a to jointly visualize velocities (two-dimensional)
and occupancies (one-dimensional). The ‘value’ encodes the
occupancy probability; dark means low occupancy probability
and bright means high occupancy probability. The ‘hue’
encodes the direction of velocity. We show a top-down view

of the HSV colorwheel in Fig. 9b for clarity. For example, the
bluish-purple hue of the cuboid in Fig. 9c means that the cuboid
is moving upwards in 2D i.e. away from the sensor in 3D.
‘Saturation’ encodes the magnitude of velocity. This means that
white is stationary (e.g. the walls of the environment shown
as parallel white lines) whereas colorful regions corresponds
to high speed.

APPENDIX I
NON-STATIONARY REWARDS

Vanilla multi-armed bandits assume that the reward distribution
for each action is stationary. The Q-value of an action after it
was been performed n times is computed as Qn = 1

n

∑n
i=1 Ri,

where Ri is the reward obtained in the i-th trial. This is
equivalent to the following recursive update rule: Qn+1 =
Qn + 1

n [Rn −Qn], where the Q-value is incremented by the
error scaled by a decaying factor 1

n .
However, in our case, a single placement strategy may not

be superior to the rest at all times and in all situations. The
reward distribution for each strategy (action) may change
with time. Hence, we assume that our rewards are non-
stationary. For non-stationary rewards, we wish to give more
weight to recent rewards than to older rewards. Therefore,
the decaying parameter is replaced by a constant step-size
parameter α: Qn+1 = Qn +α [Rn −Qn]. This weights newer
rewards exponentially more than older rewards according to
the expression: Qn = (1−α)n−1 R1+

∑n
i=2 α (1−α)n−i Ri.

APPENDIX J
EFFICIENT LIGHT CURTAIN SIMULATION

Fig. 10 shows the working principle behind the illumination
module of a programmable light curtain. It consists of a fixed
laser source that emits a light beam, and a rotating galvo-mirror
that reflects and redirects the light in any desired direction. The
laser beam is collimated to a thin rectangular sheet; however, in
reality it is a prismatic slab containing a small divergence. The

Figure 10: Efficient light curtain simulation using a virtual
laser. A light curtain consists of a fixed laser source that emits
a light beam, and a rotating galvo-mirror that reflects and
redirects the light in any desired direction. The laser beam is
collimated to a thin rectangular sheet; however, in reality it
is a prismatic slab containing a small divergence. The pixel
intensity of an object (shown by a green circle) imaged by
the light curtain depends on the radiant intensity of the laser
ray that is incident on the object (shown by the green ray
→). A ray at the center of the beam has the highest intensity
whereas a ray at the boundary of the beam (shown by orange
rays →) has the lowest intensity. In order to simulate light
curtain pixel intensities for a given object, we must compute
its incident ray i.e. compute its “laser angle” shown by .
This computation can be expensive since (1) it involves tracing
rays between the source and the object through a reflection at
the mirror, and (2) it must be performed for each pixel. Our
insight is to construct a “virtual” laser source by reflecting
the real source about the mirror plane. Due to the laws of
reflection, the reflected beam is equivalent to originating from
the virtual source behind the mirror. This allows the laser angle
to be computed efficiently by projecting the object point in the
virtual source’s frame. Furthermore, the virtual source needs to
be reflected only once for each mirror configuration; all pixel
points in the currently active camera column can be efficiently
projected into the same virtual laser source.

pixel intensity of an object (shown by a green circle) imaged
by the light curtain depends on the radiant intensity of the
laser ray that is incident on the object (shown by the green ray
→). A ray at the center of the beam has the highest intensity
whereas a ray at the boundary of the beam (shown by orange
rays →) has the lowest intensity. In order to simulate light
curtain pixel intensities for a given object, we must compute

its incident ray i.e. compute its “laser angle” shown by .
Computing the laser ray incident to the object is expensive

because (1) it involves tracing rays between the source and the
object through a reflection at the mirror, and (2) it must be
performed for each pixel. Our insight is to construct a “virtual”
laser source by reflecting the real source about the mirror plane.
Due to the laws of reflection, the reflected beam is equivalent
to originating from the virtual source behind the mirror. This
allows an object point’s laser angle to be computed efficiently
by projecting it in the virtual source’s frame. Furthermore, the
virtual source needs to be reflected only once for each mirror
configuration; all pixel points in the currently active camera
column can be efficiently projected into the same virtual source.

APPENDIX K
FULL-STACK NAVIGATION

We integrate our system into a full-stack navigation pipeline
based on the Autonomous Exploration Development Environ-
ment [15]. We mount the light curtain device on a mobile
robot (see Fig. 3a). Our tightly integrated pipeline performs
localization, mapping, planning, control and obstacle avoidance.
We use ORB-SLAM3 [13] for localization and mapping that
takes depth from light curtains as input while the planning
and control capabilities are provided by Cao et al. [15].
The pipeline described in Sec. VII combines light curtain
placement strategies using self-supervised multi-armed bandits
with recursive Bayes estimation of dynamic occupancy grids.
The output of this pipeline i.e. position and velocity estimates
are used by the autonomy stack to perform dense mapping in
an indoor environment and obstacle avoidance. Furthermore,
the localization from ORB-SLAM3 [13] is fed back into
our pipeline for ego-motion subtraction in the motion update
step (Eqns. 1, 4). We show two demonstrations of our fully
integrated autonomy stack:

A. Real-time dense mapping

Light curtains sense objects that intersect its surface at
a high resolution. This ability can be leveraged to perform
dense mapping and reconstruction of an environment. Please
see a video of dense real-time reconstruction of an indoor
hallway environment using our system on the project website.
Fig. 11 shows a sideways and top-down projection of the same.
The robot was operated in the indoor hallway environment,
and 3D points detected by light curtains were input to ORB-
SLAM3 [13], an RGB-D based localization and mapping
system that estimates the robot’s pose. The pose estimates are
fed back into our pipeline to perform ego-motion subtraction
in the motion update step. The robot trajectory is shown as a
white line. Fig. 11a shows that the floor, walls and other objects
are reconstructed densely and accurately. Fig. 11b contains
a top-down orthographic view which shows the accuracy of
our system’s localization – the robot’s trajectory was correctly
determined to be an (approximately) closed loop around the
building floor. This experiment serves to demonstrate our full-
stack navigation pipeline using light curtains.

https://siddancha.github.io/projects/active-velocity-estimation

Figure 11: Dense indoor reconstruction and mapping using our integrated system. The light curtain was mounted on a mobile
robot (Fig. 3a) and operated in an indoor hallway environment. Detected depth points from light curtains were input to
ORB-SLAM3 [13], an RGB-D based localization and mapping system that estimates the robot’s pose. The pose estimates are
fed back into our pipeline to perform ego-motion subtraction in the motion update step. The robot trajectory is shown as a
white line. (a) Sideways perspective view: showing dense reconstruction of walls, the floor and other objects. (b) Top-down
orthographic view: showing the accuracy of localization (white line) and loop-closure. Please find the full video on the project
website. This experiment serves to demonstrate our full-stack navigation pipeline using light curtains.

Figure 12: Real-time obstacle avoidance using our integrated system. The robot is represented by a green vehicle. The yellow
curves show a library of dynamically feasible paths of the robot [14]. Points detected by the light curtain on the static (chair)
and dynamic (person) objects are show in blue. The feasible paths that are expected to collide with objects are removed, and a
safe path (shown in red) is chosen by the planner. Please find the full video on the project website.

B. Real-time obstacle avoidance

Light curtains are a fast sensor (∼45 Hz) whose speed
is leveraged by our system to produce position and velocity
estimates at a high frequency (∼35 Hz). We use these estimates
for real-time obstacle avoidance, shown in Fig. 12. The robot
is represented by a green vehicle. The yellow curves show a
library of dynamically feasible paths of the robot [14]. Points
detected by the light curtain are shown in blue. There are

two objects in the scene: a static chair, and a moving person.
Using the position estimates of obstacles, feasible paths that are
expected to collide with objects are rejected, and a safe path
(shown in red) is chosen by a local planner [14]. Please find
the full video of real-time obstacle avoidance on the project
website.

https://siddancha.github.io/projects/active-velocity-estimation
https://siddancha.github.io/projects/active-velocity-estimation
https://siddancha.github.io/projects/active-velocity-estimation
https://siddancha.github.io/projects/active-velocity-estimation
https://siddancha.github.io/projects/active-velocity-estimation

	Appendix A: Derivation of recursive Bayesian estimation
	Appendix B: Dynamic occupancy grids
	Mathematical framework
	Motion update step
	Measurement update step

	Appendix C: Computing depth probabilities using raymarching
	Appendix D: Maximizing information gain
	Appendix E: Advantages of light curtains over conventional depth sensors
	Appendix F: Using an extra grid for thread-safety and efficiency
	Appendix G: Evaluation Metrics
	Appendix H: Visualizing velocities and occupancies
	Appendix I: Non-stationary rewards
	Appendix J: Efficient Light Curtain Simulation
	Appendix K: Full-stack navigation
	Real-time dense mapping
	Real-time obstacle avoidance

