
Technical Report
Deep Evidential Epistemic and Aleatoric Uncertainty Estimation for

Semantic Segmentation in Off-Road Navigation

SECTION I
BAYESIAN UNCERTAINTY DECOMPOSITION

It is important to distinguish between aleatoric and epistemic
uncertainty [21, 30, 43]. Aleatoric uncertainty arises from
inherent and irreducible ambiguity in the true class label
due to noise in sensor observations such as motion blur or
low-resolution of small objects. Aleatoric uncertainty can
be computed from the softmax output of the classifier and
trained by maximizing data log-likelihood. On the other hand,
epistemic uncertainty arises from uncertainty in model pa-
rameters due limited training data (when multiple models can
explain/fit the same training dataset). Epistemic uncertainty
is directly related to out-of-distribution detection; epistemic
uncertainty is high for examples that lie outside the model’s
training distribution. Conveniently, in the Bayesian estimation
framework, the total uncertainty i.e. entropy of the label
posterior distribution can be decomposed into two terms that
correspond to aleatoric and epistemic uncertainty, as derived
below. A graphical model for the framework is depicted in

Fig. 4: Probabilistic graphical model of Bayesian uncertainty estima-
tion in classification/segmentation. A classifier model parametrized
by θ outputs a categorical probability distribution p given an input
x. The predicted label y is then sampled from p. Given a dataset
D = {x(n), y(n)}|D|

n=1, the task is to infer the distributional posterior
p(p |x,D) for test input x.

Fig. 4. A single classifier (a.k.a. “model”) is parametrized by
θ ∈ Θ, where Θ is the space of model parameters. Given a
D-dimensional input vector x ∈ RD, each model θ predicts
a categorical distribution p = (p1, p2, . . . , pC) ∈ ∆C over C
discrete classes where p lies in the C-dimensional simplex
i.e. ∀c, pc ∈ [0, 1] and

∑C
c=1 pc = 1. The predicted semantic

label y ∈ {1, . . . , C} is then sampled from p.
Given a training dataset D = {x(n), y(n)}|D|

i=1 of input-
label pairs (x(n), y(n)), Bayesian neural networks learn
to predict the label posterior distribution (also called the
“posterior predictive” distribution) for a given test input x by

marginalizing out the model parameters θ and categorical
distributions p:

p(y |x,D)︸ ︷︷ ︸
label posterior

=

∫ ∫
θ,p

p(y | p) p(p | x,θ) p(θ | D) dp dθ

(8)
Throughout the paper, we will treat the term p(p | x,θ) as
point mass: a classifier θ deterministically predicts a single
categorical distribution p for a given input x. However, Eqn. 8
is more general and makes mathematical notation conve-
nient [37]. Classical formulations of Bayesian uncertainty
marginalize p in Eqn. 8 to obtain p(y | x,D) =

∫
θ
p(y |

x,θ) p(θ | D) dθ and focus on the model posterior p(θ | D).
However, to study epistemic and aleatoric uncertainty, it is
instead more useful to marginalize out θ from Eqn. 8 to
obtain:

p(y |x,D)︸ ︷︷ ︸
p: label posterior

=

∫
p

p(y |p) p(p |x,D)︸ ︷︷ ︸
π: distributional posterior

dp (9)

where π := p(p |x,D) =
∫
θ
p(p | x,θ) p(θ | D) dθ

is known as the distributional posterior. The distributional
posterior shall be our main quantity of interest. It is a posterior
distribution over categorical distributions p. For example,
a trained ensemble of k models predicts k categorical
distributions π = (p1, . . . ,pk) for an input x. Note that the
final label posterior distribution p := p(y |x,D) is simply
the mean of the distributional posterior π.

p = Ep∼πp (10)

Therefore the final label distribution of the ensemble would
be p = 1

k

∑k
j=1 pj . Let us denote p = (p1, . . . , pC), where

pc = Ep∼π pc. The uncertainty of a categorical distribution
p is measured by its entropy: H(p) = −

∑C
c=1 pc log pc [12].

Then, the total uncertainty (entropy) of the label posterior
distribution (final output distribution over labels) H(p) can
be decomposed as [15, 37]:

H(p)︸ ︷︷ ︸
Total uncertainty

= −
C∑

c=1

pc log pc

= −
C∑

c=1

(
Ep∼π pc

)
log pc

= −Ep∼π

C∑
c=1

pc log pc

= −Ep∼π

C∑
c=1

pc

[
log

pc
pc

+ log pc

]

(a) Finite mixture of categori-
cal distributions predicted by
members of an ensemble.

(b) Corresponding Dirichlet
posterior; low-epistemic and
low-aleatoric uncertainty.

(c) Dirichlet posterior
with low-epistemic and
high-aleatoric uncertainty.

(d) Dirichlet posterior
with high-epistemic and
low-aleatoric uncertainty.

(e) Dirichlet posterior with
high-epistemic and high-
aleatoric uncertainty.

Fig. 5: Visualization of different types of distributional posteriors p(p |x,D) for three semantic classes. Each triangle denotes the
three-dimensional simplex ∆3; each point on the simplex is a categorical distribution p ∈ ∆3 with p1, p2, p3 ∈ [0, 1] and p1+p2+p3 = 1.
(a) Distributional posterior from an ensemble, which is a finite mixture of categorical distributions; each categorical is predicted by a
member of the ensemble. (b) A Dirichlet posterior over ∆3 that approximates the ensemble distribution. (b-d) Various types of Dirichlet
posteriors. Distributions that are concentrated at a point (vs. spread out) have low (vs. high) epistemic uncertainty since all categorical
samples are in agreement. Distributions that are close to the corners of the simplex (vs. close to the center) have low (vs. high) aleatoric
uncertainty since all categorical samples are more (vs. less) certain.

= −Ep∼π

C∑
c=1

pc log
pc
pc

− Ep∼π

C∑
c=1

pc log pc

H(p)︸ ︷︷ ︸
Total uncertainty

= Ep∼πDKL(p || p)︸ ︷︷ ︸
Epistemic uncertainty

+ Ep∼πH(p)︸ ︷︷ ︸
Aleatoric uncertainty

(11)

where p := Ep∼πp

The epistemic uncertainty is the mean distance (KL-
divergence) between the predicted categoricals and the mean
categorical. In other words, it measures the disagreement
between the predicted categoricals across multiple models
p(θ | D); the disagreement is expected to be high for OOD
test inputs x that are not well represented in the training
data. The aleatoric uncertainty is the average entropy of the
predicted categoricals; aleatoric uncertainty is high when
most models p(θ | D) predict a uniform distribution over
labels due to noisy inputs x. Note that each of the three
uncertainties in Eqn. 11 lie in [0, logC].

Fig. 5 visualizes different types of distributional posteriors
that are parametrized as Dirichlet distributions, and their
implications for epistemic and aleatoric uncertainty.

SECTION II
THEORETICAL ANALYSIS OF THE CORRECTED BAYESIAN

LOSS FUNCTION

Posterior networks [6, 7] are a recently proposed evidential
deep learning method that predict p(p | x,D) motivated
by exact posterior inference for the Dirichlet-categorical
conjugate pair. In Sec. II-A, we describe the exact Bayesian
inference procedure for the Dirichlet-categorical conjugate
pair in an idealistic scenario. Then, in Sec. II-B, we detail the
use of NatPNs to approximate the exact posterior inference
for Dirichlet distributions.

A. Exact posterior inference for Dirichlet distributions

Consider a idealistic scenario where the test input x (or
examples similar to x) are observed in the training dataset D,
Nx times: D = {(x, y(n))}Nx

n=1 and the label samples y(n)

are i.i.d. from p(y | x). A large Nx should correspond to
low epistemic uncertainty and a high Nx should correspond

to high epistemic uncertainty. Before observing any labeled
data, Charpentier et al. [6, 7] assume p(p | x) = Dir(p | 1),
where 1 = (1, ..., 1) is a C-dimensional vector. Dir(p | 1)
is a flat prior whose probability density is uniform over its
support p ∈ ∆C . After observing the labels {y(n)}Nx

n=1, the
posterior distribution is also a Dirichlet (due to conjugacy)
and is given by p(p | x,D) = Dir(p | 1 + Nxβx) [58],
where βx is a C-dimensional vector whose c-th component
is the fraction of observed labels with class c i.e.

Nx
c := |{y(n) | y(n) = c}N

x

n=1| βx
c :=

Nx
c

Nx
(12)

Note that Nx corresponds to the “count” of x in the training
set i.e. the number of examples in the training set “resemble”
x. This is also referred to as the “pseudo-count” of x. The
pseudo-count is approximated by Nx ≈ Nϕ(x) = NHpθ(x)
where pθ(x) is a probability density estimate of x from an
invertible normalizing flow model with weights ϕ, and NH

is a constant scaling factor. Similarly βx is the observed
empirical distribution of labels of x in D.

B. Approximating posterior Dirichlet inference via NatPNs

Charpentier et al. [6, 7] approximate the exact posterior
distribution Dir(p | 1 +Nxβx) described in App. II-B by
combining the outputs of a classification network (in our
case, a segmentation network) βϕ(x) ∈ ∆C , and a density
estimator (normalizing flow network) pθ(x) ∈ R≥0. The
classifier βϕ(x) outputs a categorical distribution over labels
given x, whereas the scaled output of the density estimator
Nϕ(x) = NH pθ(x) is used to approximate the pseudo-
count of x. The overall neural-network based approximation
is given by:

p(p |x,D) = Dir(p | 1+Nxβx)

≈ Dir(p | 1 + Nϕ(x)︸ ︷︷ ︸
=NH pθ(x)

· βϕ(x))

The weights ϕ of the normalizing flow model pθ and the
classifier βϕ are shared since they both share a learned latent
representation [7].

Going forward, we drop the dependence on x for notational
simplicity i.e. write πϕ(x) as πϕ, Nϕ(x) as Nϕ and βϕ(x)
as βϕ. Furthermore, we define

αx := 1+Nxβx (true posterior Dirichlet parameters)

αϕ := 1+Nϕβϕ (predicted posterior Dirichlet parameters)

where αx,αϕ ∈ {R>0}C are C-dimensional positive vectors.

C. Deriving the coefficient for the Bayesian loss function
using variational inference

The evidential neural network with parameters ϕ learns to
predict the posterior distribution Dir(p | 1 + Nxβx) ≈
πϕ(x) = Dir(p | 1 + Nϕ(x)βϕ(x)) by minimizing a
“Bayesian loss function” [6, 7]. The loss combines an expected
cross-entropy term that encourages the classifier to predict
the conditional label distribution p(y | x), with an entropy
regularization term that prevents the predicted Dirichlet
distribution from being excessively concentrated/peaky.

L(ϕ) =
∑
n

[
−Ep∼πϕ

log(y(n)| p)︸ ︷︷ ︸
Expected cross-entropy loss term

− λ H(πϕ)︸ ︷︷ ︸
Entropy regularization term

]
where πϕ = Dir(p | 1+Nϕβϕ) (13)

Since πϕ(x) is a Dirichlet distribution, both terms of the
Bayesian loss function (Eqn. 7) can be computed in closed-
form and are differentiable [6, 7].

The combination coefficient λ balances between training
the classifier to minimize cross-entropy loss, with an entropy
regularization term that affects the density estimator (invert-
ible normalizing flow) and controls the concentration of the
predicted Dirichlet. Charpentier et al. [6, 7] hand-tune λ and
set it to a constant value.

Can the value of λ be derived in a principled way? We
want the predicted posterior distribution πϕ(p) = Dir(p | 1+
Nϕβϕ) to approximate the true posterior p(p | D) = Dir(p |
1+Nxβx), where D = {y(n)}Nx

n=1 and βx
c = |{y(n) | y(n) =

c}Nx

n=1|/Nx. Therefore, we pose the problem as variational
inference where we want to minimize the KL-divergence
between a parametric predicted posterior distribution πϕ(p)
and the true posterior distribution p(p | D):

DKL(πϕ(p) || p(p | D))

= −Ep∼πϕ
log

p
(
p | {y(n)}Nx

n=1

)
πϕ(p)

= −Ep∼πϕ
log

p
(
{y(n)}Nx

n=1 | p
)
p(p)

πϕ(p)

= −Ep∼πϕ
log p

(
{y(n)}N

x

n=1 | p
)
+ DKL(πϕ(p) || p(p))

=
[
− Ep∼πϕ

log

Nx∏
n=1

p(y(n) | p)
]
+ DKL(πϕ(p) || Dir(p | 1))

=

[Nx∑
n=1

−Ep∼πϕ
log p(y(n) | p)

]
−H(πϕ(p)) + constant

≡
Nx∑
n=1

[
− Ep∼πϕ

log p(y(n) | p)− 1

Nx
H(πϕ(p))

]
(14)

Here, the prior p(p | 1) is the uniform Dirichlet distribution
Dir(p | 1). This causes the KL-divergence to reduce to an
entropy modulo a constant value that doesn’t depend on ϕ.

Eqn. 14 is identical to the Bayesian loss function in
Eqn. 7, 13 and suggests that λ should be set to 1/Nx

i.e. the inverse of the “pseudo-count” of x in the training
dataset. Intuitively, the entropy regularization is obtained from
a singular prior term Dir(p | 1), whereas the cross-entropy
loss is obtained from the summation of log-likelihoods over
every label observed for x. Therefore, the relative weight of
the the two terms is a function of the number of data points
Nx in the dataset. The higher the value of Nx, the lower is
the relative weight of the entropy regularization term.

Since the true pseudo-count is not available, we use the
predicted pseudo-count Nϕ(x) = NHpθ(x). Our proposed
density-corrected loss function is:

argmin
ϕ

∑
n

[
− Ep∼πϕ(x) log p(y

(n)| p)− 1

Nϕ(x)︸ ︷︷ ︸
density-based correction

H(πϕ(x))
]

Charpentier et al. [6] set λ = 10−5. This implicitly cor-
responding to Nx = 105. Similarly, Charpentier et al. [7]
perform a grid search for λ in the range [0, 10−5]. Importantly,
Nx is treated to be uniform across all x in the training set.
In contrast, our proposed coefficient is a function of the
density of the individual input x, and cannot be replicated
by grid-search (of any resolution) over uniform values.

D. Analyzing the Bayesian loss function with our proposed
coefficient

In order to analyze the properties of the Bayesian loss
function and motivate our choice of the coefficient λ = 1

Nϕ(x)
from a different perspective, we will take the partial derivative
(∂) of the Bayesian loss function. We will treat the Bayesian
loss function L in Eqn. 13 as a function L(βϕ, Nϕ, λ) of
three variables: (i) βϕ ∈ ∆C , (ii) Nϕ ∈ R≥0 and (iii) λ ∈ R.
Here, λ may potentially be a function of network parameters
ϕ. The partial derivative is taken with respect to a generic
quantity and not specialized for now.

∂ L(βϕ, Nϕ, λ)

= ∂

{
− 1

Nx

Nx∑
n=1

Ep∼πϕ

[
log p(y(n) | p)

]
− λ H(Dir(p | αϕ))

}

= −∂
C∑

c=1

Nx
c

Nx
Ep∼πϕ

[
log pc

]
− ∂

(
λ H(Dir(p | αϕ))

)
= −∂

C∑
c=1

βx
c (ψ(1 +Nϕβϕ

c)− ψ(C +Nϕ))

− ∂
(
λ
[
log B(1+Nϕβϕ) +Nϕψ(C +Nϕ

−
C∑

c=1

Nϕβϕ
c ψ(1 +Nϕβϕ

c)
])

= −∂
C∑

c=1

βx
c ψ(1 +Nϕβϕ

c)− ψ(C +Nϕ)

− ∂
(
λ
[C∑
c=1

log Γ(1 +Nϕβϕ
c)− log Γ(C +Nϕ)

+Nϕψ(C +Nϕ)−
C∑

c=1

Nϕβϕ
c ψ(1 +Nϕβϕ

c)
])

= −
C∑

c=1

βx
c ψ′(1 +Nϕβϕ

c) ∂(N
ϕβϕ

c) + ψ′(C +Nϕ) ∂Nϕ

− λ

[
C∑

c=1
(((((((((((
ψ(1 +Nϕβϕ

c) ∂(N
ϕβϕ

c)−((((((((
ψ(C +Nϕ) ∂Nϕ

+ ((((((((
ψ(C +Nϕ) ∂Nϕ +Nϕψ′(C +Nϕ) ∂Nϕ

−
C∑

c=1
(((((((((((
ψ(1 +Nϕβϕ

c) ∂(N
ϕβϕ

c)

−
C∑

c=1

Nϕβϕ
c ψ′(1 +Nϕβϕ

c) ∂(N
ϕβϕ

c)

]
− (∂λ) H(Dir(1+Nϕβϕ))

= −
C∑

c=1

βx
c ψ′(1 +Nϕβϕ

c) ∂(N
ϕβϕ

c) + ψ′(C +Nϕ) ∂Nϕ

− λNϕψ′(C +Nϕ) ∂Nϕ

+ λ

C∑
c=1

Nϕβϕ
c ψ′(1 +Nϕβϕ

c)∂(N
ϕβϕ

c)

− (∂λ) H(Dir(1+Nϕβϕ))

= −
C∑

c=1

ψ′(1 +Nϕβϕ
c) ∂(N

ϕβϕ
c)

[
βx
c − λ Nϕβϕ

c

]
+ ψ′(C +Nϕ) ∂(Nϕ)

[
1− λNϕ

]
− (∂λ) H(Dir(1+Nϕβϕ))

where Γ(z) is the Gamma function [59], ψ(z) = d
dz log Γ(z)

is the digamma function [57], and B(z) is the multivariate
beta function [56] where for z = (z1, . . . , zk), B(z) =∏K

i=1 Γ(zi)/Γ
(∑K

i=1 zi
)
. To summarize, the partial deriva-

tive of the Bayesian loss is:

∂L(βϕ, Nϕ, λ) =−
C∑

c=1

ψ′(1 +Nϕβϕ
c) ∂(N

ϕβϕ
c)

[
βx
c − λ Nϕβϕ

c

]
+ ψ′(C +Nϕ) ∂(Nϕ)

[
1− λNϕ

]
− (∂λ) H(Dir(1+Nϕβϕ)) (15)

We will now derive certain desirable properties of λ = 1
Nϕ .

Fortunately, the following theorems hold when using the
predicted pseudo-count Nϕ(x) in λ, even though Eqn. 14
requires the true but unknown pseudo-count Nx, and Nϕ(x)
could be an arbitrarily bad approximation of Nx.

Theorem 1: Necessity

When λ ̸= 1
Nϕ(x)

, the true posterior may not minimize
the Bayesian loss function.

Proof: To see this, let us compute the extremum of the
Bayesian loss by computing its partial derivatives with respect
to βϕ

c i.e. ∂

∂βϕ
c
L(βϕ, Nϕ, λ). Note that since βϕ ∈ ∆C , it has

C−1 degrees of freedom. Let us parametrize it by {βϕ
c }C−1

c=1

where βϕ
C is a dependent variable — βϕ

C = 1 −
∑C−1

c=1 β
ϕ
c .

This provides the partial derivative with respect to βϕ
c as:

∂L(βϕ, Nϕ, λ)

∂βϕ
c

= −Nϕ

(
ψ′(1 +Nϕβϕ

c)
[
βx
c − λ Nϕβϕ

c

]
+ ψ′(1 +Nϕβϕ

C)
[
βx
C − λ Nϕβϕ

C

])
(16)

Observe that βϕ = βx/λNϕ is an extremum. Therefore, if
λ ̸= 1/Nϕ, the minimization of the Bayesian loss might not
result in the true posterior βϕ = βx. □

Theorem 2: Extremity

When λ = 1
Nϕ(x)

, the true posterior is an extremum
of the Bayesian loss function.

Proof: Let us first simplify Eqn. 15 by setting λ = 1
Nϕ .

∂L(βϕ, Nϕ) =−
C∑

c=1

ψ′(1 +Nϕβϕ
c) ∂(N

ϕβϕ
c)

[
βx
c − βϕ

c

]
−

(
∂

∂Nϕ

1

Nϕ

)
(∂Nϕ)H(Dir(1+Nϕβϕ))

=−
C∑

c=1

ψ′(1 +Nϕβϕ
c) ∂(N

ϕβϕ
c)

[
βx
c − βϕ

c

]
+ (∂Nϕ)

1

(Nϕ)2
H(Dir(1+Nϕβϕ)) (17)

Let us also simplify Eqn. 16 by setting λ = 1
Nϕ .

∂L(βϕ, Nϕ)

∂βϕ
c

= −Nϕ

(
ψ′(1 +Nϕβϕ

c)
[
βx
c − βϕ

c

]
− ψ′(1 +Nϕβϕ

C)
[
βx
C − βϕ

C

])
(18)

Eqn 18 implies than when βϕ = βx, then ∂L/∂βϕ
c = 0.

Therefore, βϕ = βx is an extremum of the Bayesian loss
function. □

However, this does not preclude the existence of other
extrema where βϕ ̸= βx that minimize the Bayesian
loss function. Fortunately, the next property rules out this
possibility.

Theorem 3: Uniqueness

When λ = 1
Nϕ(x)

, the true posterior is the unique
extremum of the Bayesian loss function.

Proof: In general, a system of C − 1 non-linear equations in
C−1 variables given by Eqn. 16 can have multiple solutions,
since the digamma function ψ is non-linear. However, we
show that in the special case of λ = 1/Nϕ, the solution is
unique. To prove that the extremum is unique, we will use

the fact that the derivative of the digamma function is always
positive [57] : ψ′(z) > 0, ∀z > 0. Setting Eqn. 18 to equal
zero, we get

∀c ∈ {1, . . . , C} : ψ′(1 +Nϕβϕ
c)

[
βx
c − βϕ

c

]
= γ (19)

for some constant γ that depends on Nϕ and βϕ. We will
now prove that γ = 0.

First, assume that γ > 0. Then, since ψ′ is always
positive, ψ′(1 + Nϕβϕ

c)
[
βx
c − βϕ

c

]
> 0 =⇒ βx

c − βϕ
c >

0 ; ∀c. Summing the C equations given by Eqn. 19, since∑C
c=1 β

x
c =

∑C
c=1 β

ϕ
c = 1, we get 0 > 0, which is a

contradiction. Similarly, assuming γ < 0 also leads to a
contradiction. This implies that γ = 0 which further implies
that ψ′(1 + Nϕβϕ

c)
[
βx
c − βϕ

c

]
= 0 =⇒ βx

c = βϕ
c ; ∀c.

This means that βϕ = βx is the unique extremum. □

Theorem 4: Minimum

When λ = 1
Nϕ(x)

, the unique extremum of the
Bayesian loss function is a minimum.

Proof: We compute the second derivative ∂2L(βϕ,Nϕ)

∂ (βϕ
c)2

by

differentiating Eqn. 18 with respect to βϕ
c :

∂2L(βϕ, Nϕ)2

∂βϕ
c
2

= −(Nϕ)2
(
ψ′′(1 +Nϕβϕ

c)
[
βx
c − βϕ

c

]
+ ψ′′(1 +Nϕβϕ

C)
[
βx
C − βϕ

C

])
︸ ︷︷ ︸

= 0 at βϕ=βx

+Nϕ

(
ψ′(1 +Nϕβϕ

c) + ψ′(1 +Nϕβϕ
c)

)
︸ ︷︷ ︸

> 0

> 0

The first term is zero at βϕ = βx, whereas the second term
is always positive since ψ′(z) > 0, ∀z > 0 [57]. Since the
second derivative is positive at the unique extremum, the
extremum is a minimum. □

Theorem 5: Density maximization

When λ = 1
Nϕ(x)

, the Bayesian loss function is mini-
mized as Nϕ(x) → +∞. This trains the normalizing
flow to maximize predicted density pθ(x) on the
training data.

Proof: Assuming that λ = 1/Nϕ and ∂
∂Nϕ β

ϕ
c = 0, from

Eqn. 17 we get:

0 =
∂L(βϕ, Nϕ)

∂Nϕ

= −
C∑

c=1

ψ′(1 +Nϕβϕ
c) β

ϕ
c

[
βx
c − βϕ

c

]
+

1

(Nϕ)2
H(Dir(1+Nϕβϕ))

=
1

(Nϕ)2
H(Dir(1+Nϕβϕ)) (βϕ = βx at the unique optimum)

At the optimum, the entropy of the Dirichlet H(Dir(p |
1+Nϕβϕ)) must be zero. This can only happen when the

concentration parameter of the Dirichlet i.e. Nϕ increases
to +∞. Therefore, when λ = 1

Nϕ , the Bayesian loss
function tries to increase the density of the normalizing
flow Nϕ(x) = NH pθ(x) on in-distribution examples in
the training set to infinity. This is similar to the conventional
log-likelihood training objective for normalizing flows, which
also maximizes the probability density pθ(x) predicted by the
normalizing flow on the training set. Therefore, the Bayesian
loss trains both the classifier βϕ and the normalizing flow
pϕ provided λ = 1

Nϕ . □
Note that theorems 1-5 hold when using the predicted

pseudo-count Nϕ(x) for λ, even though Eqn. 14 requires
the true but unknown pseudo-count Nx, and Nϕ(x) could
be an arbitrarily bad approximation of Nx.

