
Appendix

Streaming Flow Policy
Simplifying diffusion/flow-matching policies by

treating action trajectories as flow trajectories

A Proof of Theorem 1

Integrating learned velocity fields can suffer from drift since errors accumulate during integration.
We adding a stabilization term, we can correct deviations from the demonstration trajectory. The
stabilizing velocity field is:

vω(a, t) = →k(a→ ω(t))︸ ︷︷ ︸
Stabilization term

+ ω̇(t)︸︷︷︸
Path velocity

(7)

where k > 0 is the stabilizing gain. This results in exponential convergence to the demonstration:
d

dt
(a→ ω(t)) = →k(a→ ω(t)) (8)

=↑ 1

a→ ω(t)

d

dt
(a→ ω(t)) = →k (9)

=↑ d

dt
log(a→ ω(t)) = →k (10)

=↑ log(a→ ω(t))
∣∣∣
t

0
= →

∫ t

0
kdt (11)

=↑ log
a(t)→ ω(t)

a0 → ω(0)
= →kt (12)

=↑ a(t) = ω(t) + (a0 → ω(0))e→kt (13)

Since a0 ↓ N
(
ω(0),ε2

0

)
(see Eq. 1), and a(t) is linear in a0, we have by linearity of Gaussian

distributions that:
pω(a | t) = N (a

∣∣ ω(t),ε2
0e

→2kt) (14)

↭

B Decoupling stochasticity via latent variables

In order to learn multi-modal distributions during training, streaming flow policy as introduced in
Sec. 3 requires a small amount of Gaussian noise added to the initial action. However, we wish to avoid
adding noise to actions at test time. We now present a variant of streaming flow policy in an extended
state space by introducing a latent variable z ↔ A. The latent variable z decouples stochasticity
from the flow trajectory, allowing us to sample multiple modes of the trajectory distribution at test
time while deterministically starting the sampling process from the most recently generated action.
We now define a conditional flow in the extended state space (a, z) ↔ A2. We define the initial

distribution by sampling a0 and z0 independently. a0 is sampled from a vanishingly narrow Gaussian
distribution centered at the initial action of the demonstration trajectory ω(0), but with a extremely
small variance ε0 ↗ 0. z0 is sampled from a standard normal distribution, similar to standard
diffusion models [9] and flow matching [3].

Initial sample

z0 ↓ N (0, I) (15)
a0 ↓ N (ω(0),ε2

0) (16)
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Figure 5: Constructing a conditional flow using auxiliary stochastic latent variables instead of adding
noise to actions. In this toy example, the x-axis represents a 1-D action space, and the y-axis
represents both trajectory time and flow time. (a) A toy bi-modal training set contains two trajectories
shown in red and blue; the same as in Fig. 1a. Given a demonstration trajectory ω from the training set
(e.g. the demonstration in blue), we design a velocity field vω(a, z, t) that takes as input time t ↔ [0, 1],
the action a at time t, as well as an additional latent variable z. The latent variable is responsible for
injecting noise into the flow sampling process, allowing the initial action a(0) to be deterministically
set to the initial action ω(0) of the demonstration. The latent variable z(0) ↓ N (0, 1) is sampled
from the standard normal distribution at the beginning of the flow process, similar to conventional
diffusion/flow policies. The velocity field vω(a, z, t) generates trajectories in an extended sample
space [0, 1] ↘ A2 where a and z are correlated and co-evolve with time. (b, c) Shows the marginal
distribution of actions a(t) and the latent variable z(t), respectively, at each time step. Overlaid in
red are the a- and z- projections, respectively, of trajectories sampled from the velocity field. The
action evolves in a narrow Gaussian tube around the demonstration, while the latent variable starts
from N (0, 1) at t = 0 and converges to the demonstration trajectory at t = 1; see App. B for a full
description of the velocity field.

ε0 Initial standard deviation R+

ε1 Final standard deviation R+

k Stabilizing gain R↑0

εr Residual standard deviation =
√

ε2
1 → ε2

0e
→2k R↑0

Table 4: Hyperparameters used in the stochastic variant of streaming flow policy that uses stochastic
latent variables.

We assume hyperparameters ε0, ε1 and k. They correspond to the initial and final standard deviations
of the action variable a in the conditional flow. k is the stabilizing gain. Furthermore, we constrain
them such that ε1 ≃ ε0e→k. Then, let us define εr :=

√
ε2
1 → ε2

0e
→2k. Then we construct the joint

flow trajectories of (a, z) starting from (a(0), z(0)) as:

Flow trajectory diffeomorphism

a(t | ω, a0, z0) = ω(t) + (a0 → ω(0)) e→kt + (εrt)z0

z(t | ω, a0, z0) = (1→ (1→ ε1)t)z0 + tω(t)
(17)

The flow is a diffeomorphism from A2 to A2 for every t ↔ [0, 1].

Note that a(0 | ω, a0, z0) = a0 and z(0 | ω, a0, z0) = z0, so the diffeomorphism is identity at t = 0.
The marginal distribution at t = 1 for a and z is given by a(1 | ω) ↓ N (ω(1),ε2

1) and z(1 | ω) ↓
N (ω(1),ε2

1).

Intuitively, the variable a follows the shape of the action trajectory ω(t) with an error starting from
a0 → ω(0) and decreasing with an exponential factor due to the stabilizing gain. However, it uses the
sampled noise variable z0 ↓ N (0, I) to increase the standard deviation from ε0 around ω(0) to ε1
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around ω(1). This is done in order to sample different modes of the trajectory distribution at test time.
On the other hand, the latent variable z starts from the random sample z0 ↓ N (0, I) but continuously
moves closer to the demonstration trajectory ω(t), reducing its variance from 1 to ε1.

Since (a, z) at time t is a linear transformation of (q0, z0), the joint distribution of (a, z) at every
timestep is a Gaussian given by:

Joint distribution of (a, z) at each timestep
[
a
z

]
=

[
e→kt εrt
0 1→ (1→ ε1)t

]

︸ ︷︷ ︸
A

[
a0
z0

]
+

[
ω(t)→ ω(0)e→kt

tωt

]

︸ ︷︷ ︸
b

(18)

pω(a, z | t) = N
(
Aµ0 + b , A!0A

T
)

(19)

= N
([

ω(t)
tω(t)

]
,

[
!11 !12

!12 !22

])
where (20)

!11 = ε2
0e

→2kt + ε2
r t

2 (21)
!12 = εrt (1→ (1→ ε1)t) (22)

!22 = (1→ (1→ ε1)t)
2 (23)

Note that µ0 =

[
ω(0)
0

]
and !0 =

[
ε2
0 0
0 1

]
.

Since the flow is a diffeomorphism, we can invert it and express (a0, z0) as a function of (a(t), z(t)):
Inverse of the flow diffeomorphism

z0 =
z → tω(t)

1→ (1→ ε1)t

a0 = ω(0) + (a→ ω(t)→ (εrt)z0) e
kt

(24)

At time t, the velocity of the trajectory starting from (a0, z0) can be obtained by differentiating the
flow diffeomorphism in Eq. 17 with respect to t:

Velocity in terms of (a0, z0)

ȧ(t | ω, a0, z0) = ω̇(t)→ k (a0 → ω(0)) e→kt + εrz0

ż(t | ω, a0, z0) = ω(t) + tω̇(t)→ (1→ ε1)z0
(25)

The flow induces a velocity field at every (a, z, t). The conditional velocity field vε(a, z, t |h) by
first inverting the flow transformation as shown in Eq. 24, and plugging that into Eq. 25, we get:

Conditional velocity field

vaω (a, z, t) = ω̇(t)→ k (a→ ω(t)) +
εr (1 + kt)

1→ (1→ ε1)t
(z → tω(t))

vzω (a, z, t) = ω(t) + tω̇(t)→ 1→ ε1

1→ (1→ ε1)t
(z → tω(t))

(26)

Importantly, the evolution of a and z is inter-dependent i.e. the sample z0 determines the evolution
of a. Furthermore, the marginal probability distribution paω (a, t) can be deduced from the joint
distribution in Eq. 20 and is given by:

pω(a | t) = N
(
a
∣∣ ω(t) , ε2

0e
→2kt + ε2

r t
2
)

(27)
In other words, q evolves in a Gaussian tube centered at the demonstration trajectory ω(t) with a stan-
dard deviation that varies from ε0 at t = 0 to ε1 at t = 1. The fact that the marginal distribution lies
close to the demonstration trajectories, from Eq. 5 ensures that the per-timestep marginal distributions
over actions induced by the learned velocity field are close to training distribution. However, this
formulation allows us to select extremely small values of ε0, essentially deterministically starting
from the last generated action aprev. The stochasticity injected by sampling z0 ↔ N (0, I), as well
as the correlated evolution of a and z ensures that we sample a diverse distribution of actions in a
starting from the same action acurr. This phenomenon is illustrated via a 1-D toy example in Figs. 5
and 6, with details in captions.
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Figure 6: The marginal velocity flow field vε(a, z, t |h) learned using the flow construction in Fig. 5.
(a, b) shows the marginal distribution of actions a(t) and the latent variable z(t), respectively, at each
time step under the learned velocity field. (c, d) Shows the a- and z- projections, respectively, of
trajectories sampled from the learned velocity field. By construction, a(0) deterministically starts
from the most recently generated action, whereas z(0) is sampled from N (0, 1). Trajectories starting
with z(0) < 0 are shown in blue, and those with z(0) > 0 are shown in red. The main takeaway is
that in (c), even though all samples deterministically start from the same initial action (i.e. the most
recently generated action), they evolve in a stochastic manner that covers both modes of the training
distribution. This is possible because the stochastic latent variable z is correlated with a, and the
initial random sample z(0) ↓ N (0, 1) informs the direction a evolves in.

C Action Horizon

In Fig. 7, we analyze the effect of action chunk size on the performance of streaming flow policy, under
various benchmark environments: (1) Robomimic: Can, (2) Robomimic: Square, (3) Push-T with
state input and (4) Push-T with image input. The x-axis shows the chunk size in log scale. The
y-axis shows the relative decrease in performance compared to that of the best performing chunk size.
All scores are less than or equal to zero, where higher is better. In 3/4 environments, the performance
peaks at chunk size 8, and 1/4 environments peak at chunk size 6. The performance decreases as the
chunk size deviates from the optimum. Our results match with findings from Chi et al. [1], suggesting
that behavior cloning policies have a “sweet spot” in the chunk size of the action trajectories. We
recommend choosing a larger chunk size (i.e. closer to open-loop execution) when the environment
dynamics are deterministic and stable. Smaller chunk sizes should be used in stochastic environments
with high uncertainty, where the policy may benefit from a tighter feedback loop.

Figure 7: Analysis of the effect of action chunk size on the performance of streaming flow policy, under various
benchmark environments. x-axis shows the chunk size, in log scale. y-axis shows the relative decrease in
performance compared to that of the best performing chunk size. All scores are less than or equal to zero, where
higher is better. In 3/4 environments, the performance peaks at chunk size 8, and the other environment peaks at
chunk size 6. The performance decreases as the chunk size increases or decreases from the optimum.
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D Push-T experiments with image inputs and action imitation

In this section, we perform experiments in the Push-T environment [1, 16] using images as observa-
tions, and imitating actions instead of states (see Sec. 6 for a discussion on state imitation vs. action
imitation). This was missing in Table 5 of the main paper.

The conclusions from the table are essentially the same as in the main paper. Streaming flow policy
performs nearly as well as the best performing baseline i.e. diffusion policy with 100 DDPM inference
steps. However, streaming flow policy is significantly faster than diffusion policy. It is also faster
than the remaining baselines, while also achieving a higher task success rate.

Push-T with image input
Action imitation
Avg/Max scores

Latency

→ ↑
1 DP [1]: 100 DDPM steps 83.8% / 87.0% 127.2 ms
2 DP [1]: 10 DDIM steps 80.8% / 85.5% 10.4 ms
3 Flow matching policy [5] 71.0% / 72.0% 12.9 ms
4 Streaming DP [14] 80.5% / 83.9% 77.7 ms
5 SFP (Ours) 82.5% / 87.0% 08.8 ms

Table 5: Imitation learning accuracy on the Push-T [1] dataset with images as observation inputs, and imitating
action trajectories. Our method (in green) compared against baselines (in red). See text for details.
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