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Abstract: Recent advances in diffusion/flow-matching policies have enabled
imitation learning of complex, multi-modal action trajectories. However, they are
computationally expensive because they sample a trajectory of trajectories—a
diffusion/flow trajectory of action trajectories. They discard intermediate action
trajectories, and must wait for the sampling process to complete before any actions
can be executed on the robot. We simplify diffusion/flow policies by treating action
trajectories as flow trajectories. Instead of starting from pure noise, our algorithm
samples from a narrow Gaussian around the last action. Then, it incrementally
integrates a velocity field learned via flow matching to produce a sequence of
actions that constitute a single trajectory. This enables actions to be streamed to the
robot on-the-fly during the flow sampling process, and is well-suited for receding
horizon policy execution. Despite streaming, our method retains the ability to
model multi-modal behavior. We train flows that stabilize around demonstration
trajectories to reduce distribution shift and improve imitation learning performance.
Streaming flow policy outperforms prior methods while enabling faster policy
execution and tighter sensorimotor loops for learning-based robot control.

Figure 1: (a) Diffusion policy [1] and flow-matching policy [2] input a history of observations (not shown) to
predict a “chunk” of future robot actions. The x-axis represents the action space, and the +y-axis represents
increasing diffusion/flow timesteps. Conventional diffusion/flow policies sample a “trajectory of trajectories”
— a diffusion/flow trajectory of action trajectories. They discard intermediate trajectories, and must wait for
the diffusion/flow process to complete before the first actions can be executed on the robot. (b) We simplify
diffusion/flow policies by treating action trajectories as flow trajectories. Our flow-matching algorithm operates
in action space. Starting from a noised version of the last executed action, it incrementally generates a sequence
of actions that constitutes a single trajectory. This aligns the “time” of the flow sampling process with the
“execution time” of the action trajectory. Importantly, actions can be streamed to the robot’s actuators on the fly
during the flow sampling process, while retaining the ability to model multi-modal trajectory distributions.
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Figure 2: (a) To illustrate our method, we consider a toy example of 1-D robot actions with two demonstration
trajectories shown in blue and red. (b) Given a demonstration trajectory sampled from the training set (e.g. the
blue one), we first analytically construct a conditional flow i.e. an initial action distribution and a velocity field.
The constructed flow samples trajectories from a thin Gaussian tube around the demonstration trajectory. Using
the constructed velocity field as targets, we learn a marginal velocity field via flow matching [3], shown in (c).
The learned velocity field has the property that its induced marginal distribution over actions at each horizontal
time slice matches the training distribution. (d) The initial action at t = 0 is sampled from a narrow Gaussian
centered at the most recently executed action. Then, we iteratively integrate the learned velocity field to generate
an action trajectory. Sampled trajectories (shown in red) cover both behavior modes in the training data. (b) We
find that constructing conditional flows that stabilize around demonstration trajectories reduces distribution shift
and improves imitation learning performance. The main takeaway is that our method is able to both represent
multi-modal distributions over action trajectories like diffusion/flow policies, while also iteratively generating
actions that can be streamed during the flow sampling process, enabling fast and reactive policy execution.

1 Introduction

Recent advances in robotic imitation learning, such as diffusion policy [1, 4] and flow-matching
policy [2, 5, 6] have enabled robots to learn complex, multi-modal action distributions for challenging
real-world tasks such as cooking, laundry folding, robot assembly and navigation [7]. They take a
history of observations as input, and output a sequence of actions (also called an “action chunk”).
Conventional diffusion/flow policies represent a direct application of diffusion models [8, 9] and
flow-matching [3] to robot action sequences — they formulate the generative process as proba-
bilistic transport in the space of action sequences, starting from pure Gaussian noise. Therefore,
diffusion/flow policies represent a “trajectory of trajectories” — a diffusion/flow trajectory of action
trajectories (Fig. 1a). This approach has several drawbacks. The sampling process discards all inter-
mediate action trajectories, making diffusion/flow policies computationally inefficient. Importantly,
the robot must wait for the diffusion/flow process to complete before executing any actions. Thus,
diffusion/flow policies often require careful hyper-parameter tunning to admit tight control loops.

In this work, we propose a novel imitation learning framework that harnesses the temporal structure
of action trajectories. We simplify diffusion/flow policies by treating action trajectories as flow
trajectories (Fig. 1b). Our aim is to learn a flow transport in the action space A, as opposed
to trajectory space AT . Unlike diffusion/flow policies that start the sampling process from pure
Gaussian noise (in AT ), our initial sample comes from a narrow Gaussian centered around the most
recently generated action (in A). Then, we iteratively integrate a learned velocity field to generate a
sequence of future actions that forms a single trajectory. The “flow time” — indicating progress of
the flow process — coincides with execution time of the sampled trajectory. Iteratively generating
the sequence of actions allows the actions to be streamed to the robot’s controller on-the-fly during
the flow generation process, significantly improving the policy’s speed and reactivity.

We show how a streaming flow policy with the above desiderata can be learned using flow matching [3].
Given an action trajectory from the training set (Fig. 2a), we construct a velocity field conditioned on
this example that samples paths in a narrow Gaussian “tube” around the demonstration (Fig. 2b).
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Symbol Description Domain
Tpred Prediction time horizon of trajectories during training R+

Tchunk Time horizon of action chunk during inference R+

t Flow time = execution time rescaled from [0, Tpred] to [0, 1] [0, 1]
a Robot action (often a robot configuration) A
v Action velocity TA

o, h Observation, Observation history O,H
ξ Action trajectory (chunk), where time is rescaled from [0, Tpred] to [0, 1] [0, 1] → A
ξ̇ Time derivative of action trajectory: ξ̇(t) = d

dt
ξ(t) [0, 1] → TA

pD(h, ξ) Distribution of observation histories and future action chunks.
Training set is assumed to be sampled from this distribution.

∆(H×
[0, 1] → A)

vθ(a, t |h) Learned marginal velocity field with network parameters θ TA
vξ(a, t) Conditional velocity field for demonstration ξ TA
pξ(a | t) Marginal probability distribution over a at time t induced by vξ ∆(A)
v∗(a, t |h) Optimal marginal velocity field under data distribution pD TA
p∗(a | t, h) Marginal probability distribution over a at time t induced by v∗ ∆(A)

k, σ0 Stabilizing gain, Initial standard deviation R≥0, R+

Table 1: Mathematical notation used throughout the paper.

Our training procedure is remarkably simple — we regress a neural network vθ(a, t |h) that takes
as input (i) an observation history h, (ii) flow timestep t ∈ [0, 1], and (iii) action a, to match the
constructed velocity field. We are able to re-use existing architectures for diffusion/flow policy
while only modifying the input and output dimension of the network from AT to A. Flow matching
guarantees that the marginal flow learned over all training trajectories, as shown in Fig. 2(c, d),
is multi-modal. Specifically, the marginal distribution of actions at each timestep t matches that
of the training distribution. Our approach thus retains diffusion/flow policy’s ability to represent
multi-modal trajectories while allowing for streaming trajectory generation.

How should we construct the target velocity field? Prior work [10] has shown that low-level stabilizing
controllers can reduce distribution shift and improve theoretical imitation learning guarantees. We
leverage the flexibility of the flow matching framework to construct velocity fields that stabilize
around a given demonstration trajectory, by adding velocity components that guide the flow back to the
demonstration. In our experiments, we find that stabilizing flow significantly improves performance.

Our method can leverage two key properties specific to robotics applications: (i) robot actions are
often represented as position setpoints of the robot’s joints or end-effector pose that are tracked by a
low-level controller, (ii) the robot’s joint positions/end-effector poses can be accurately measured
via proprioceptive sensors (e.g. joint encoders) and forward kinematics. Streaming flow policy can
not only imitate action trajectories, but is especially suited to imitate state trajectories when a stiff
controller is available that can closely track state trajectories. In this case, the flow sampling process
can be initialized from the known ground truth robot state instead of the state predicted from the
previous chunk. This reduces uncertainty and error in the generated trajectory.

Unlike diffusion/flow policies, streaming flow policy is only guaranteed to match the marginal
distribution of actions at each timestep, but not necessarily the joint distribution. Consequently, our
method can produce trajectories that are compositions of segments of training trajectories, even if the
composition was not part of the training dataset. While this may be seen as a limitation of our method,
we argue that for most robotics tasks, compositionality is not only valid, but a desirable property that
requires fewer demonstrations. Furthermore, while streaming flow policy is unable to capture global
constraints that can only be represented in the joint distribution, it can learn local constraints such as
joint constraints, and convex velocity constraints; see Sec. 9 for more details. In practice, we find that
streaming flow policy performs comparably to diffusion policy while being significantly faster.

2 Background and problem formulation

We consider the problem of imitating sequences of future actions a ∈ A from histories of observations
h ∈ H as input, where a history h = {oi}Ki=1 is a finite sequence of observations oi ∈ O. The
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time horizon Tpred ∈ R+ of the trajectory to be predicted can be an arbitrary hyperparameter. For
simplicity, we re-scale the time interval to [0, 1] by dividing by Tpred. Therefore, we represent an
action trajectory as ξ : [0, 1]→ A. We assume an unknown data generating distribution pD(h, ξ) of
inputs and outputs, from which a finite training dataset D = {(hi, ξi)}Ni=1 of N tuples is sampled.
See Table 1 for a complete list of notation. Our aim is to learn a policy that outputs a potentially
multi-modal distribution over future trajectories ξ given a history of observations h.

Velocity fields: We formulate streaming flow policy, with model parameters θ, as a history-
conditioned velocity field vθ (a, t |h). For a given history h ∈ H, t ∈ [0, 1], and action a ∈ A,
the model outputs a velocity in the tangent space TA of A. The velocity field is a neural ordinary dif-
ferential equation (ODE) [11]. Given an initial action a(0), the velocity field induces trajectories a(t)
in action space by specifying the instantaneous time-derivative of the trajectory da/dt = vθ (a, t |h).

Flows: The pairing of vθ (a, t |h) with an initial probability distribution over a(0) is called a
continuous normalizing flow [11, 12] (simply referred to as “flow”). A flow transforms the initial
action distribution to a new distribution pθ (a | t, h), for every t ∈ [0, 1], in a deterministic and
invertible manner. We want streaming flow policy to start sampling close to the action aprev that
was most recently executed. This is the final action that was computed in the previous action chunk.
When imitating state trajectories instead of action trajectories, we set aprev to the current known
robot state. Invertible flows require the initial probability distribution over a(0) to have non-zero
probability density on the domain A to be well behaved. Therefore, we chose a narrow Gaussian
distribution centered at aprev with a small variance σ2

0 . A trajectory is generated by sampling from
the initial distribution and integrating the velocity field as:

a(t) = a0 +

∫ t

0

vθ
(
a(s), s

∣∣h) ds where a0 ∼ N
(
aprev, σ

2
0

)
(1)

Importantly, standard ODE solvers can perform forward finite-difference integration auto-regressively,
where integration at time t depends only on previously computed actions a(s), s ≤ t. This property
allows us to stream actions during the integration process, without needing to wait for the full
trajectory to be computed. Next, we describe how we analytically construct conditional velocity fields
given a trajectory ξ. Then, we will use them as targets to learn vθ (a, t |h) using flow matching [3].

3 Analytically constructing conditional velocity fields

Given an action trajectory ξ, we first analytically construct a stabilizing conditional flow that travels
closely along ξ. This will be used as a target to train a neural network velocity field. In particular,
we construct a velocity field vξ(a, t) and an initial distribution p0ξ(a) such that the induced marginal
probability distributions pξ(a | t) form a thin Gaussian “tube” around ξ. By “Gaussian tube”, we
mean that pξ(a | t) is a narrow Gaussian distribution centered at ξ(t) for every t ∈ [0, 1]. This is
illustrated in Fig. 2(a,b). We construct the stabilizing conditional flow as:

vξ(a, t) = ξ̇(t)︸ ︷︷ ︸
Trajectory velocity

− k(a− ξ(t))︸ ︷︷ ︸
Stabilization term

and p0ξ(a) = N
(
a | ξ(0) , σ2

0

)
(2)

The initial distribution p0ξ(a) is a narrow Gaussian centered at the initial action ξ(0) with a small
standard deviation σ0. The velocity has two components. The trajectory velocity is the velocity of the
action trajectory ξ at time t, and does not depend on a. This term serves to move along the direction of
the trajectory. The stabilization term is a negative proportional error feedback that corrects deviations
from the trajectory. Controllers that stabilize around demonstration trajectories are known to reduce
distribution shift and improve theoretical imitation learning guarantees [10]. We empirically observe
that the stabilizing term produces significantly more robust and performant policies, compared to
setting k = 0. We note that our framework leverages time derivatives of action trajectories ξ̇(t)
during training, which are easily accessible, in addition to ξ(t). This is in contrast to conventional
diffusion/flow policies that only use ξ(t) but not ξ̇(t). We note that, throughout this paper, the term
‘velocity’ refers to ξ̇(t), and not the physical velocity of the robot. While they may coincide for
certain choices of the action space A, ξ̇(t) may not represent any physical velocity.
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Algorithm 1 Training algorithm

Input: Training set D = {(hi, ξi)}Ni=1, Tpred
• ξ has time horizon Tpred rescaled to [0, 1]

1: while not converged do
2: (h, ξ) ∼ D
3: t ∼ Uniform(0, 1)
4: a ∼ pξ(a | t) (defined in Eq. 3)
5: θ ← θ − λ∇θ∥vξ(a, t)− vθ(a, t |h)∥2︸ ︷︷ ︸

Conditional flow matching loss

6: return vθ

Algorithm 2 Inference algorithm

Input: vθ(a, t |h), Tpred, Tchunk, ∆t
1: h, a← {} , qcurr (current robot configuration)
2: while True do
3: t, hchunk ← 0, h
4: if imitating state: a← qcurr
5: while t ≤ Tchunk/Tpred do // open loop
6: o← Execute(a) // stream action during flow
7: h← h ∪ {o}
8: a← a+ vθ(a, t |hchunk)∆t // integration step
9: t← t+∆t

Theorem 1: The stabilizing conditional flow given by Eq. 2 induces the following per-timestep
marginal distributions over the action space:

pξ(a | t) = N
(
a
∣∣ ξ(t), σ2

0e
−2kt

)
(3)

Proof: See App. A. The distribution of states sampled at any timestep t ∈ [0, 1] is a Gaussian centered
at the trajectory ξ(t). Furthermore, the standard deviation starts from σ0 and decays exponentially
with time at rate k.

4 Learning objective for velocity fields to match marginal action distributions

Let pD(h, ξ) denote the unknown data generating distribution from which the training dataset is
sampled. The conditional velocity field vξ(a, t) defined in Sec. 3 models a single action trajectory. If
multiple behaviors ξ are valid for the same input history h, how can we learn a velocity field v(a, t |h)
that represents multi-modal trajectory distributions? Using vξ(a, t) as target, the conditional flow
matching loss [3] for a history-conditioned velocity field v(a, t |h) is defined as:

LCFM(v, pD) = E (h, ξ)∼pD E t∼U [0,1] Ea∼pξ(a | t)
∥∥v(a, t |h)− vξ(a, t)

∥∥2
2

(4)

This is simply an expected L2 loss between a candidate velocity field v(a, t |h) and the the analyti-
cally constructed conditional velocity field vξ(a, t) as target. The expectation is over histories and
trajectories under the probability distribution pD(h, ξ), time t sampled uniformly from [0, 1], and
action a sampled from the constructed conditional flow known in closed-form in Eq. 3. The following
theorem characterizes the per-timestep marginal distributions induced by the minimizer of this loss:

Theorem 2: The minimizer v∗ = argminv LCFM(v, pD) induces the following per-timestep
marginal distribution for each t ∈ [0, 1] and observation history h:

p∗(a | t, h) =
∫
ξ

pξ(a | t) pD(ξ |h) dξ (5)

Proof: This is a direct consequence of the flow matching theorems (Thms. 1 and 2) in Lipman et al.
[3]. Intuitively, the per-timestep marginal distribution induced by the minimizer of LCFM is the
average of per-timestep marginal distributions of constructed conditional flows pξ(a | t), over the
distribution of future trajectories in pD(ξ |h) that share the same observation history h.

Matching the per-timestep marginal distributions is desirable and necessary for representing multi-
modal distributions. Consider the example in Fig. 2 that constructs two conditional flows, one that
samples actions to the right (a > 0), and the other that samples actions to the left (a < 0). In
order for a learned model to sample both modes with probability 0.5 each, its per-timestep marginal
distribution must match the averaged per-timestep marginal distributions of conditional flows. Unlike
flow policies [2, 5, 6] that only require matching the target distributions at t = 1, our method leverages
the fact that flow matching [3] matches the marginal distributions at all timesteps t ∈ [0, 1].
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Push-T with state input Push-T with image input
State imitation

Avg/Max scores
Action imitation
Avg/Max scores Latency State imitation

Avg/Max scores Latency

↑ ↑ ↓ ↑ ↓
1 DP [1]: 100 DDPM steps 92.9% / 94.4% 90.7% / 92.8% 40.2 ms 87.0% / 90.1% 127.2 ms
2 DP [1]: 10 DDIM steps 87.0% / 89.0% 81.4% / 85.3% 04.4 ms 85.3% / 91.5% 10.4 ms
3 Flow matching policy [5] 80.6% / 82.6% 80.6% / 82.6% 05.8 ms 71.0% / 72.0% 12.9 ms
4 Streaming DP [14] 87.5% / 91.4% 84.2% / 87.0% 26.7 ms 84.7% / 87.1% 77.7 ms
5 SFP without stabilization 84.0% / 86.4% 81.8% / 93.2% 03.5 ms 73.9% / 77.5% 08.8 ms
6 SFP (Ours) 95.1% / 96.0% 91.7% / 93.7% 03.5 ms 83.9% / 84.8% 08.8 ms

Table 2: Imitation learning accuracy on the Push-T [1] dataset. Our method (in green) compared against
baselines (in red) / and ablations (in blue). See text for details.

5 Training and inference algorithms for streaming flow policy

Training: While we do not have access to the underlying data generating distribution pD(h, ξ), we do
have access to a training setD = {(hi, ξi)} ∼ pD(h, ξ) that contains N samples from this distribution.
Therefore, we train a neural network velocity field vθ(a, t |h) using a finite-sample estimate of Eq. 4:
L̂CFM(θ,D) = 1

N

∑N
i=1 E t∼U [0,1]Ea∼pξi (a | t)

∥∥vθ(a, t |hi)− vξ(a, t)
∥∥2
2

as shown in Alg. 1.

Inference: While behavior policies are trained to predict sequences of horizon Tpred, they are
usually run in a receding horizon fashion with a potentially different action chunk horizon Tchunk ≤
Tpred [1]. The integration timestep ∆t is another hyperparameter that controls the granularity of
the action sequence. Therefore, to generate an action chunk, we integrate the velocity field in
t ∈ [0, Tchunk/Tpred], producing Tchunk/(Tpred∆t) many actions. The action chunk is computed
and executed open-loop i.e. the neural network vθ inputs the same observation history hchunk for all
integration steps. Importantly, we are able to stream and execute actions on the robot as soon as they
are computed (see Alg. 2, line 6). In contrast, diffusion/flow policies must wait for the inner loop to
complete before executing any actions.

Deterministic execution at test time: Our learning framework suggests the initial action be sampled
from a0 ∼ N

(
a0 | aprev, σ2

0

)
(see Eqs. 1 and 2). However, during inference time, we avoid adding

noise to actions by setting σ0 = 0 to produce deterministic behavior. We do so because the ability to
represent multi-modal distributions is primarily motivated by the need to prevent “averaging” distinct
but valid behaviors of the same task [1]. While representing multi-modality is crucial during training,
the learned policy can be run deterministically at test time without loss in performance. For example,
ACT [13] sets its variance parameter to zero at test time to produce deterministic behavior. In App. B,
we present a variant of streaming flow policy in an extended state space that decouples stochasticity
into additional latent variables. This variant allows us to sample multiple modes of the trajectory
distribution at test time without adding noise to actions. However, we found that simply setting
σ0 = 0 at test time works better in practice; therefore we follow this strategy in all our experiments.

Imitating actions vs. states: When training trajectories correspond to actions, we start integration of
the current action chunk from the most recently generated action in the previous chunk. Streaming
flow policy can also be used to imitate robot state trajectories when a controller is available that can
closely track desired states. It is especially suited for state imitation because we can start integration
of the current state chunk from the current robot state that is accurately measured by proprioceptive
sensors. Streaming flow policy is able to leverage state feedback in two ways: in the history h and
the initialization a0 for flow integration. This reduces error in the generated trajectory.

6 Experiments

We evaluate streaming flow policy on two imitation learning benchmarks: the Push-T environment [1,
16], and RoboMimic [15]. We compare our method (in green ) against 4 baselines (in red ): Row
1 (DP): standard diffusion policy [1] that uses 100 DDPM [9] steps, Row 2 (DP): a faster version of
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RoboMimic Lift
Action imitation
Avg/Max scores

RoboMimic Can
Action imitation
Avg/Max scores

RoboMimic Square
Action imitation
Avg/Max scores

Latency

↑ ↑ ↑ ↓
1 DP [1]: 100 DDPM steps 100.0% / 100.0% 94.0% / 98.0% 77.2% / 84.0% 53.4 ms
2 DP [1]: 10 DDIM steps 100.0% / 100.0% 94.8% / 98.0% 76.0% / 82.0% 5.8 ms
3 Flow matching policy [5] 99.2% / 100.0% 66.0% / 80.0% 54.0% / 56.0% 4.8 ms
4 Streaming DP [14] 98.8% / 100.0% 96.8% / 98.0% 77.6% / 82.0% 30.3 ms
5 SFP without stabilization 99.6% / 100.0% 90.0% / 92.0% 53.2% / 60.0% 4.5 ms
6 SFP (Ours) 100.0% / 100.0% 98.4% / 100.0% 78.0% / 84.0% 4.5 ms

Table 3: Imitation learning accuracy on RoboMimic [15] environment. Our method (in green) compared
against baselines (in red) / and ablations (in blue). See text for details.

diffusion policy that uses 10 DDIM [17] steps, Row 3: conventional flow matching-based policy [5]
and Row 4: Streaming Diffusion Policy [14], a recent method that runs diffusion policy in a streaming
manner (see Sec. 7 for details). We also compare against streaming flow policy that does not construct
stabilizing flows during training, i.e. uses k = 0 (in blue ). This ablation is designed to measure
the contribution of stabilization to task performance. Following Chi et al. [1], we report the average
score for the 5 best checkpoints, the best score across all checkpoints, and the average latency per
action for each method. We also conduct real-world experiments on a Franka Emika Panda robot arm
with a RealSense D435f depth camera; see our project website for details.

In Table 5, we report results on the Push-T environment: a simulated 2D planar pushing task where
the robot state is the 2-D position of the cylindrical pusher in global coordinates, and actions are 2-D
setpoints tracked by a PD controller. Push-T contains 200 training demonstrations and 50 evaluation
episodes. We perform experiments in two settings: when simulator state is used as observations, and
when images are used as observations. “Action imitation” is the standard practice of imitating action
sequences provided in the benchmark training set. We also perform experiments with “state imitation”
(see Sec. 5), where we directly imitate the measured 2D positions of the robot. Here, we use the
known ground-truth robot position at the beginning of each action chunk to as a starting point for
velocity field integration.

In Table 3, we report results on the RoboMimic environment, specifically the “lift” and “can” tasks,
with state inputs. Both tasks involve predicting sequences of 6-DOF end-effector poses with respect
to a global frame that are tracked by a PD controller. Each task contains 300 training demonstrations,
and 50 evaluation episodes. The tasks involve picking objects and placing them at specific locations,
including picking a square nut and placing it on a rod.

The neural networks for streaming flow policy vθ : A× [0, 1]×H → TA is structurally similar to
diffusion/flow policies (e.g. ϵθ : AT × [0, 1]×H → AT ) with the only change being the input and
output spaces (action space A vs trajectory space AT ). Therefore, we are able to re-use existing
diffusion/flow policy architectures [1] by changing the input and output dimension of the network
and replacing 1-D temporal convolution/attention layers over action sequences [1, 18] with a fully
connected layer. Furthermore, due to the reduced dimensionality of the flow sampling space, we
found that streaming flow policy is faster to train and has a smaller GPU memory footprint compared
to diffusion/flow policies.

Conclusions: Stabilizing flow policy performs comparably to diffusion policy and other baselines in
terms of performance on most tasks, while being significantly faster per action. Furthermore, the
reported latency does not even take into account the fact that streaming flow policy can parallelize
action generation with robot execution. In practice, this can avoid delays and jerky robot movements.
Diffusion policy can be sped up by running fewer diffusion steps via DDIM [17]. And flow-matching
policy is also faster than diffusion policy. However, their speed seems to come at the cost of sometimes
significant reduction in accuracy. In App. C, we analyze the performance of streaming flow policy as
a function of the action chunk horizon Tchunk.
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7 Related work

Learning dynamical systems: Our work is closely related to prior work on learning dynamical
systems [19–23]. A key difference is that most prior works assume a single, deterministic future
trajectory given an input state. However, we focus on learning multi-modal distributions over
trajectories, which is known to be essential for behavior cloning in robotics [1]. For example,
Sochopoulos et al. [21] learn a neural ODE [11] by minimizing the distance between the predicted
and demonstrated trajectories. This is susceptible to undesirable “averaging” of distinct behaviors
that achieve the same task. Our approach learns a neural ODE endowed with an initial noise
distribution that induces a distribution over future trajectories. This is also known as a continuous
normalizing flow [11, 12]. We use the recently proposed flow matching framework [3] to fit the
predicted trajectory distribution to training data. An important consequence is that our method
aggregates “noised” demonstration trajectories as additional training samples, whereas prior works
train only on states directly present in the demonstrations. Furthermore, most prior works assume
a time-invariant velocity field [19–21]. Our velocity field depends on time and allows learning
non-Markovian behaviors for tasks like spreading sauce on pizza dough, where the end-effector
must rotate a fixed number of times. Finally, most works on learning dynamical systems focus
on point-stability around goal states [19–21]; we don’t assume goal states and construct flows that
stabilize around demonstration trajectories.

Flow matching: Flow matching [3] is a recent technique for learning complex, multi-modal distribu-
tions that has been used to model images [3, 24, 25], videos [26, 27], molecular structures [28–30],
and robot action sequences [2, 5, 6, 31, 32]. However, the flow sampling process starts from Gaussian
noise, and the distribution of interest is only modeled at the final timestep t = 1. Our insight is to
treat the entire flow trajectory as a sample from the target distribution over action sequences.

Streaming Diffusion Policy: The work most closely related to ours is Streaming Diffusion Pol-
icy [14], which is an adaptation of of discrete time diffusion policies [1]. Instead of maintaining all
actions in the sequence at the same noise level, Streaming Diffusion Policy maintains a rolling buffer
of actions with increasing noise levels. Every diffusion step reduces the noise level of all actions
by one, fully de-noising the oldest action in the buffer that can be streamed to the robot. However,
this method requires maintaining an action buffer of the length of the prediction horizon, even if
the action horizon is much shorter. Furthermore, there is an up-front cost to initialize the buffer
with increasing noise levels. The rolling buffer approach has been applied to video prediction [33]
and character motion generation [34]. Our method is more economical since it computes only as
many actions are streamed to the robot, without requiring a buffer. We evaluate our method against
Streaming Diffusion Policy in Sec. 6.

8 Conclusion

In this work, we have presented a novel approach to imitation learning that addresses the com-
putational limitations of existing diffusion and flow-matching policies. Our key contribution is a
simplified approach that treats action trajectories as flow trajectories. This enables incremental
integration of a learned velocity field that allows actions to be streamed to the robot during the
flow sampling process. The streaming capability makes our method particularly well-suited for
receding horizon policy execution. Despite the streaming nature of our approach, the flow matching
framework guarantees the ability to model multi-modal action trajectories. By constructing flows
that stabilize around demonstration trajectories, we reduce distribution shift and improve imitation
learning performance. Our experimental results demonstrate that streaming flow policy performs
comparably to prior imitation learning approaches on benchmark tasks, but enable faster policy
execution and tighter sensorimotor loops, making them more practical for reactive, real-world robot
control.
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9 Limitations

In this section, we discuss some limitations of our approach.

9.1 SFP does not match joint distribution, only per-timestep marginal distributions

Our flow matching framework ensures that the learned distribution over trajectories conditioned on
the history matches the training distribution in terms of marginal distributions of actions at each
timestep t ∈ [0, 1]. We however, do not guarantee that the joint distribution of actions across a
trajectory matches the training distribution. This is in contrast to diffusion policy, that is able to
match the joint distribution since the diffusion model operates in trajectory space AT .

Figs. 3 and 4 illustrate a toy example where streaming flow policy matches marginal distributions but
not the joint distribution. The x-axis represents 1-D robot actions, and the y-axis represents flow time
(t ∈ [0, 1]). Fig. 3a shows two trajectories in blue and red, of shapes “S” and “ S” respectively. The
trajectories intersect at t = 0.5. The learned flow field is shown in Fig. 3c, and the induced marginal
distribution over actions is shown in Fig. 3d. The marginal distribution of actions matches the training
distribution at each t ∈ [0, 1]. Trajectories sampled from the flow field are shown in Fig. 3d. The
trajectory distribution contains two modes of equal probability: trajectories that always lie either in
a < 0 (shown in blue), or in a > 0 (shown in red). The shapes formed by sampled trajectories — “ 3”
and “3” respectively — do not match the shapes of trajectories in the training data.

A similar phenomenon is illustrated in Fig. 4 using the latent-space variant of streaming flow policy
(see App. B) trained on the same dataset of intersecting trajectories. While the marginal distribution
of actions again matches with the training distribution, the trajectories contain four modes, with
shapes “S”, “ S”, “ 3” and “3”. Note that the per-timestep marginal distributions over actions still
match the training data.

Figure 3: A toy example illustrating how streaming flow policy matches marginal distribution of actions in
the trajectory at all time steps, but not necessarily their joint distribution. The x-axis represents a 1-D action
space, and the y-axis represents both trajectory time and flow time. (a) The bi-modal training set contains
two intersecting demonstration trajectories, illustrated in blue and red, with shapes “S” and “ S” respectively.
(b) The marginal distribution of actions at each time step learned by our streaming flow policy. The marginal
distributions perfectly match the training data. (c) The learned velocity flow field vθ(a, t |h) that yeilds the
marginal distributions in (b). (d) Trajectories sampled from the learned velocity field. Trajectories that start from
a < 0 are shown in blue, and those starting from a > 0 are shown in red. The sampled trajectories have shapes
“ 3” and “3”, with equal probability. These shapes are different from the shapes “S” and “ S” in the training
distribution, although their margin distributions are identical.

9.2 Streaming flow policies exhibit compositionality

The loss of fidelity to the joint distribution is a potential weakness of our framework. Therefore,
this framework may not be the right choice when learning the correct joint distributions is crucial.
However, another perspective is to think of our method as providing compositionality over training
demonstrations. The sampled trajectories can be composed of pieces across the training data.

9



Figure 4: Different variants of streaming flow policy can produce different joint distributions of actions that are
consistent with the marginal distributions in the training data. This example is produced using the latent-variable
version of streaming flow policy, described in App. B. (a) The marginal distribution of actions at each time step
learned by the streaming flow policy matches the training data. (b) Samples from the trained policy produces
four modes with shapes “S”, “ S”, “ 3” and “3”, whereas the training data contains only two modes with shapes
“S” and “ S”.

For many robotics tasks, compositionality might be both valid and desirable. For example, in
quasi-static tasks where the robot moves slowly, if two demonstration trajectories are valid, then
the compositions across these trajectories are often also valid. Under this assumption, composi-
tionality allows the flow model to learn many valid combinations of partial trajectories with fewer
demonstrations.

What constraints on trajectories reflected in the training data can streaming flow policy learn?
Streaming flow policy is unable to capture global constraints that can only be represented in the
joint distribution. However, it can learn certain local constraints.

9.3 SFPs can learn arbitrary position constraints

Robot actions a ∈ Q ⊆ A may be constrained to lie in a subset Q ⊆ A. For example, Q may reflect
joint limits of a robot arm. Then, a well-trained streaming flow policy should learn this constraint as
well.

To see why, consider Eq. 5 which states that the learned marginal density of actions p∗(a | t, h) =∫
ξ
pξ(a | t) pD(ξ |h) dξ at time t is a weighted average of marginal densities of conditional flows

pξ(a | t). Recall that we construct pξ(a | t) to be narrow Gaussian tubes around demonstration
trajectories ξ. Assume that the thickness of the Gaussian tube is sufficiently small that a /∈ Q =⇒
pξ(a | t) < ϵ, for some small ϵ > 0 and for all ξ, t. Then we have from Eq. 5 that pξ(a | t) < ϵ =⇒
p∗(a | t, h) < ϵ for all t ∈ [0, 1]. Therefore, the probability of sampling an action a that violates the
constraint Q is extremely low.

9.4 SFPs can learn convex velocity constraints

Theorem 2 of Lipman et al. [3] implies that the minimizer of the conditional flow matching loss
v∗ := argminv LCFM(v, pD) has the following form:

v∗(a, t |h) =
∫
ξ

vξ(a, t)
pD(ξ |h) pξ(a | t)∫

ξ′
pD(ξ′ |h) pξ′(a | t) dξ′︸ ︷︷ ︸

pD(ξ | a, t, h)

dξ

=

∫
ξ

vξ(a, t) pD(ξ | a, t, h) dξ (6)

≈
∫
ξ

ξ̇(t) pD(ξ | a, t, h) dξ (assuming k ≈ 0)
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Intuitively, the target velocity field v∗ at (a, t) is a weighted average of conditional flow velocities
vξ(a, t) over demonstrations ξ. The weight for ξ is the Bayesian posterior probability of ξ, where
the prior probability pD(ξ |h) is the probability of ξ given h in the training distribution, and the
likelihood pξ(a | t) is the probability that the conditional flow around ξ generates a at time t.

Under sufficiently small values of k, we have from Eq. 2 that vξ(a, t) ≈ ξ̇(t). Note that v∗ is then a
convex combination of demonstration velocities ξ̇(t). Consider convex constraints over velocities
ξ̇(t) ∈ C i.e. ξ̇(t) is constrained to lie in a convex set C for all ξ with non-zero support pD(ξ) > 0
and for all t ∈ [0, 1]. This is the case, for example, when robot joint velocities lie in a closed interval
[vmin, vmax]. Then, Eq. 6 implies that v∗ also lies in C.
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Appendix

Streaming Flow Policy
Simplifying diffusion/flow-matching policies by

treating action trajectories as flow trajectories

A Proof of Theorem 1

Integrating learned velocity fields can suffer from drift since errors accumulate during integration.
We adding a stabilization term, we can correct deviations from the demonstration trajectory. The
stabilizing velocity field is:

vξ(a, t) = −k(a− ξ(t))︸ ︷︷ ︸
Stabilization term

+ ξ̇(t)︸︷︷︸
Path velocity

(7)

where k > 0 is the stabilizing gain. This results in exponential convergence to the demonstration:
d

dt
(a− ξ(t)) = −k(a− ξ(t)) (8)

=⇒ 1

a− ξ(t)

d

dt
(a− ξ(t)) = −k (9)

=⇒ d

dt
log(a− ξ(t)) = −k (10)

=⇒ log(a− ξ(t))
∣∣∣t
0
= −

∫ t

0

kdt (11)

=⇒ log
a(t)− ξ(t)

a0 − ξ(0)
= −kt (12)

=⇒ a(t) = ξ(t) + (a0 − ξ(0))e−kt (13)

Since a0 ∼ N
(
ξ(0), σ2

0

)
(see Eq. 1), and a(t) is linear in a0, we have by linearity of Gaussian

distributions that:
pξ(a | t) = N (a

∣∣ ξ(t), σ2
0e

−2kt) (14)

□

B Decoupling stochasticity via latent variables

In order to learn multi-modal distributions during training, streaming flow policy as introduced in
Sec. 3 requires a small amount of Gaussian noise added to the initial action. However, we wish to avoid
adding noise to actions at test time. We now present a variant of streaming flow policy in an extended
state space by introducing a latent variable z ∈ A. The latent variable z decouples stochasticity
from the flow trajectory, allowing us to sample multiple modes of the trajectory distribution at test
time while deterministically starting the sampling process from the most recently generated action.
We now define a conditional flow in the extended state space (a, z) ∈ A2. We define the initial

distribution by sampling a0 and z0 independently. a0 is sampled from a vanishingly narrow Gaussian
distribution centered at the initial action of the demonstration trajectory ξ(0), but with a extremely
small variance σ0 ≈ 0. z0 is sampled from a standard normal distribution, similar to standard
diffusion models [9] and flow matching [3].

Initial sample

z0 ∼ N (0, I) (15)
a0 ∼ N (ξ(0), σ2

0) (16)
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Figure 5: Constructing a conditional flow using auxiliary stochastic latent variables instead of adding
noise to actions. In this toy example, the x-axis represents a 1-D action space, and the y-axis
represents both trajectory time and flow time. (a) A toy bi-modal training set contains two trajectories
shown in red and blue; the same as in Fig. 1a. Given a demonstration trajectory ξ from the training set
(e.g. the demonstration in blue), we design a velocity field vξ(a, z, t) that takes as input time t ∈ [0, 1],
the action a at time t, as well as an additional latent variable z. The latent variable is responsible for
injecting noise into the flow sampling process, allowing the initial action a(0) to be deterministically
set to the initial action ξ(0) of the demonstration. The latent variable z(0) ∼ N (0, 1) is sampled
from the standard normal distribution at the beginning of the flow process, similar to conventional
diffusion/flow policies. The velocity field vξ(a, z, t) generates trajectories in an extended sample
space [0, 1]→ A2 where a and z are correlated and co-evolve with time. (b, c) Shows the marginal
distribution of actions a(t) and the latent variable z(t), respectively, at each time step. Overlaid in
red are the a- and z- projections, respectively, of trajectories sampled from the velocity field. The
action evolves in a narrow Gaussian tube around the demonstration, while the latent variable starts
from N (0, 1) at t = 0 and converges to the demonstration trajectory at t = 1; see App. B for a full
description of the velocity field.

σ0 Initial standard deviation R+

σ1 Final standard deviation R+

k Stabilizing gain R≥0

σr Residual standard deviation =
√

σ2
1 − σ2

0e
−2k R≥0

Table 4: Hyperparameters used in the stochastic variant of streaming flow policy that uses stochastic
latent variables.

We assume hyperparameters σ0, σ1 and k. They correspond to the initial and final standard deviations
of the action variable a in the conditional flow. k is the stabilizing gain. Furthermore, we constrain
them such that σ1 ≥ σ0e

−k. Then, let us define σr :=
√

σ2
1 − σ2

0e
−2k. Then we construct the joint

flow trajectories of (a, z) starting from (a(0), z(0)) as:

Flow trajectory diffeomorphism

a(t | ξ, a0, z0) = ξ(t) + (a0 − ξ(0)) e−kt + (σrt)z0

z(t | ξ, a0, z0) = (1− (1− σ1)t)z0 + tξ(t)
(17)

The flow is a diffeomorphism from A2 to A2 for every t ∈ [0, 1].

Note that a(0 | ξ, a0, z0) = a0 and z(0 | ξ, a0, z0) = z0, so the diffeomorphism is identity at t = 0.
The marginal distribution at t = 1 for a and z is given by a(1 | ξ) ∼ N (ξ(1), σ2

1) and z(1 | ξ) ∼
N (ξ(1), σ2

1).

Intuitively, the variable a follows the shape of the action trajectory ξ(t) with an error starting from
a0 − ξ(0) and decreasing with an exponential factor due to the stabilizing gain. However, it uses the
sampled noise variable z0 ∼ N (0, I) to increase the standard deviation from σ0 around ξ(0) to σ1
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around ξ(1). This is done in order to sample different modes of the trajectory distribution at test time.
On the other hand, the latent variable z starts from the random sample z0 ∼ N (0, I) but continuously
moves closer to the demonstration trajectory ξ(t), reducing its variance from 1 to σ1.

Since (a, z) at time t is a linear transformation of (q0, z0), the joint distribution of (a, z) at every
timestep is a Gaussian given by:

Joint distribution of (a, z) at each timestep[
a
z

]
=

[
e−kt σrt
0 1− (1− σ1)t

]
︸ ︷︷ ︸

A

[
a0
z0

]
+

[
ξ(t)− ξ(0)e−kt

tξt

]
︸ ︷︷ ︸

b

(18)

pξ(a, z | t) = N
(
Aµ0 + b , AΣ0A

T
)

(19)

= N
([

ξ(t)
tξ(t)

]
,

[
Σ11 Σ12

Σ12 Σ22

])
where (20)

Σ11 = σ2
0e

−2kt + σ2
r t

2 (21)
Σ12 = σrt (1− (1− σ1)t) (22)

Σ22 = (1− (1− σ1)t)
2 (23)

Note that µ0 =

[
ξ(0)
0

]
and Σ0 =

[
σ2
0 0
0 1

]
.

Since the flow is a diffeomorphism, we can invert it and express (a0, z0) as a function of (a(t), z(t)):
Inverse of the flow diffeomorphism

z0 =
z − tξ(t)

1− (1− σ1)t

a0 = ξ(0) + (a− ξ(t)− (σrt)z0) e
kt

(24)

At time t, the velocity of the trajectory starting from (a0, z0) can be obtained by differentiating the
flow diffeomorphism in Eq. 17 with respect to t:

Velocity in terms of (a0, z0)

ȧ(t | ξ, a0, z0) = ξ̇(t)− k (a0 − ξ(0)) e−kt + σrz0

ż(t | ξ, a0, z0) = ξ(t) + tξ̇(t)− (1− σ1)z0
(25)

The flow induces a velocity field at every (a, z, t). The conditional velocity field vθ(a, z, t |h) by
first inverting the flow transformation as shown in Eq. 24, and plugging that into Eq. 25, we get:

Conditional velocity field

vaξ (a, z, t) = ξ̇(t)− k (a− ξ(t)) +
σr (1 + kt)

1− (1− σ1)t
(z − tξ(t))

vzξ (a, z, t) = ξ(t) + tξ̇(t)− 1− σ1

1− (1− σ1)t
(z − tξ(t))

(26)

Importantly, the evolution of a and z is inter-dependent i.e. the sample z0 determines the evolution
of a. Furthermore, the marginal probability distribution paξ (a, t) can be deduced from the joint
distribution in Eq. 20 and is given by:

pξ(a | t) = N
(
a
∣∣ ξ(t) , σ2

0e
−2kt + σ2

r t
2
)

(27)
In other words, q evolves in a Gaussian tube centered at the demonstration trajectory ξ(t) with a stan-
dard deviation that varies from σ0 at t = 0 to σ1 at t = 1. The fact that the marginal distribution lies
close to the demonstration trajectories, from Eq. 5 ensures that the per-timestep marginal distributions
over actions induced by the learned velocity field are close to training distribution. However, this
formulation allows us to select extremely small values of σ0, essentially deterministically starting
from the last generated action aprev. The stochasticity injected by sampling z0 ∈ N (0, I), as well
as the correlated evolution of a and z ensures that we sample a diverse distribution of actions in a
starting from the same action acurr. This phenomenon is illustrated via a 1-D toy example in Figs. 5
and 6, with details in captions.
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Figure 6: The marginal velocity flow field vθ(a, z, t |h) learned using the flow construction in Fig. 5.
(a, b) shows the marginal distribution of actions a(t) and the latent variable z(t), respectively, at each
time step under the learned velocity field. (c, d) Shows the a- and z- projections, respectively, of
trajectories sampled from the learned velocity field. By construction, a(0) deterministically starts
from the most recently generated action, whereas z(0) is sampled from N (0, 1). Trajectories starting
with z(0) < 0 are shown in blue, and those with z(0) > 0 are shown in red. The main takeaway is
that in (c), even though all samples deterministically start from the same initial action (i.e. the most
recently generated action), they evolve in a stochastic manner that covers both modes of the training
distribution. This is possible because the stochastic latent variable z is correlated with a, and the
initial random sample z(0) ∼ N (0, 1) informs the direction a evolves in.

C Action Horizon

In Fig. 7, we analyze the effect of action chunk size on the performance of streaming flow policy, under
various benchmark environments: (1) Robomimic: Can, (2) Robomimic: Square, (3) Push-T with
state input and (4) Push-T with image input. The x-axis shows the chunk size in log scale. The
y-axis shows the relative decrease in performance compared to that of the best performing chunk size.
All scores are less than or equal to zero, where higher is better. In 3/4 environments, the performance
peaks at chunk size 8, and 1/4 environments peak at chunk size 6. The performance decreases as the
chunk size deviates from the optimum. Our results match with findings from Chi et al. [1], suggesting
that behavior cloning policies have a “sweet spot” in the chunk size of the action trajectories. We
recommend choosing a larger chunk size (i.e. closer to open-loop execution) when the environment
dynamics are deterministic and stable. Smaller chunk sizes should be used in stochastic environments
with high uncertainty, where the policy may benefit from a tighter feedback loop.

Figure 7: Analysis of the effect of action chunk size on the performance of streaming flow policy, under various
benchmark environments. x-axis shows the chunk size, in log scale. y-axis shows the relative decrease in
performance compared to that of the best performing chunk size. All scores are less than or equal to zero, where
higher is better. In 3/4 environments, the performance peaks at chunk size 8, and the other environment peaks at
chunk size 6. The performance decreases as the chunk size increases or decreases from the optimum.
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D Push-T experiments with image inputs and action imitation

In this section, we perform experiments in the Push-T environment [1, 16] using images as observa-
tions, and imitating actions instead of states (see Sec. 6 for a discussion on state imitation vs. action
imitation). This was missing in Table 5 of the main paper.

The conclusions from the table are essentially the same as in the main paper. Streaming flow policy
performs nearly as well as the best performing baseline i.e. diffusion policy with 100 DDPM inference
steps. However, streaming flow policy is significantly faster than diffusion policy. It is also faster
than the remaining baselines, while also achieving a higher task success rate.

Push-T with image input

Action imitation
Avg/Max scores

Latency

↑ ↓
1 DP [1]: 100 DDPM steps 83.8% / 87.0% 127.2 ms
2 DP [1]: 10 DDIM steps 80.8% / 85.5% 10.4 ms
3 Flow matching policy [5] 71.0% / 72.0% 12.9 ms
4 Streaming DP [14] 80.5% / 83.9% 77.7 ms
5 SFP (Ours) 82.5% / 87.0% 08.8 ms

Table 5: Imitation learning accuracy on the Push-T [1] dataset with images as observation inputs, and imitating
action trajectories. Our method (in green) compared against baselines (in red). See text for details.

18


	Introduction
	Background and problem formulation
	Analytically constructing conditional velocity fields
	Learning objective for velocity fields to match marginal action distributions
	Training and inference algorithms for streaming flow policy
	Experiments
	Related work
	Conclusion
	Limitations
	SFP does not match joint distribution, only per-timestep marginal distributions
	Streaming flow policies exhibit compositionality
	SFPs can learn arbitrary position constraints
	SFPs can learn convex velocity constraints

	Proof of Theorem 1
	Decoupling stochasticity via latent variables
	Action Horizon
	Push-T experiments with image inputs and action imitation

