

Streaming Flow Policy

Simplifying diffusion/flow policies by treating action trajectories as flow trajectories

Massachusetts Institute of Technology

Sunshine Jiang, Xiaolin Fang, Nicholas Roy, Tomás Lozano-Pérez, Leslie Kaelbling, Siddharth Ancha

TLDR; SFP is a new imitation learning method that executes much faster than diffusion policy without reducing accuracy

Diffusion/flow policies are a "trajectory of trajectories" Action trajectory Execution time \longrightarrow Action trajectory (chunk) $\in \mathcal{A}^T$

Streaming flow policy: action

Streaming flow policy learns a velocity field: $v_{ heta}(a,t\,|\,h)$

Produces an action trajectory (chunk) e.g. EE poses tracked by a controller.

Inputs: • h: Observation history • t: Scaled future timestep in [0,1] • a: Action Generate trajectory:

Start with the most recently executed action $a_{
m prev}$ predicted from the previous chunk. Integrate velocity field from a_{prev} to produce future trajectory a(t) for $t \in [0,1]$

$$a(t) = a_0 + \int_0^t v_{\theta}(a(s), s \mid h) ds$$
 where $a_0 \sim \mathcal{N}(a_{\text{prev}}, \sigma_0^2)$

- SFP: Can stream actions to controller during flow process.
 - DP: discards intermediate trajectories,
 - must wait for diffusion process to complete before executing actions.
- In receding-horizon control where $T_{\text{test}} < T_{\text{train}}$ horizon:
- SFP computes only as many as as needed. DP must produce all T_{train} actions.
- $\overline{\mathbf{W}}$ Minimal modification to DP architecture: only changes output layer dimension.

Construct a conditional flow around a given demonstration trajectory

Toy dataset:

 $a \in \mathbb{R}$

2 demos

1-D action \rightarrow

 $\xi:[0,1] o \mathcal{A}$

Constructing

conditional flow

around demo ξ

1-D action →

Initial distribution at t = 0Gaussian centered at initial action Learn marginal flow via flow matching

Constructed velocity field

 $p_{\xi}^0(a)=\,\mathcal{N}\left(a\,|\,\xi(0),\sigma_0^2
ight)\,\,\,\,v_{\xi}(a,t)\,=\,\xi(t)\,-\,k(a-\xi(t))$

Trajectory velocity Stabilization term* $a_0 \sim \delta(\xi(0))$ $z(t | \xi, a_0, z_0) = (1 - (1 - \sigma_1)t)z_0 + t\xi(t)$

*Low-level controllers that stabilize around demo trajectories reduce distribution shift and improve IL guarantees [2].

Distributions induced by velocity field: $p_{\xi}(a \mid t) = \mathcal{N}\left(a \mid \xi(t), \ \sigma_0^2 e^{-2kt}\right)$

Conditional flow matching loss: matches marginal action distributions

 $\mathbb{E}_{(h,\xi)\sim p_{\mathcal{D}}}\,\mathbb{E}_{t\sim U[0,1]}\,\mathbb{E}_{a\sim p_{\xi}(a\,|\,t)}\,\big\|v_{\theta}(a,t\,|\,h)-v_{\xi}(a,t)\big\|_{2}^{2}$

By flow matching theorem [1], per-timestep marginal distribution of learned flow field matches the training distribution.

SFP learns multimodal trajectory distributions!

Alternate formulations: Injecting noise via extra latent variables

We can be creative in applying the flow matching framework to action chunks! Instead of adding noise to initial action, decouple it as a separate latent variable z. Then perform flow-matching in extended space $(a,z)\in\mathcal{A}^2$

co-evolve